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Chapter 1

Introduction and Contributions

This dissertation covers various topics on data-driven pricing and optimization. Each
chapter treats a specific topic and is self-contained, which allows the reader to consume
any subset of chapters in any particular order. The first three chapters revolve around
the problem of setting the right price for a product or an assortment of multiple prod-
ucts. We consider this problem from a theoretical (Ch. 2), numerical (Ch. 3), and empiri-
cal (Ch. 4) point of view. The final chapter (Ch. 5) considers data-driven optimization in
the context of a scheduling problem. Below follows a detailed overview of the content
and contributions of each chapter.

Chapter 2: Price Optimization under the Finite-Mixture Logit Model

In Chapter 2, we consider the problem of optimizing prices (with respect to revenue)
for a monopolist that sells products to customers that choose according to the finite-
mixture logit (FML) model. This chapter fits the classical approach—pioneered by the
French philosopher and mathematician Antoine Augustin Cournot in 1838—in which
first the relationship between price and demand is modeled as a mathematical function
and, subsequently, the price is set that optimizes a certain objective function (e.g., the
revenue or profit).

The FML choice model assumes customers belong to one of a number of customer seg-
ments, where each customer segment chooses according to a multinomial logit model
with segment-specific parameters. As such, the FML choice model incorporates cus-
tomer heterogeneity, i.e., it acknowledges that different types of customers exist that
have different preferences. Existing work in the field of price optimization has consid-
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2 Chapter 1

ered customer choice models—most notably the multinomial logit and the nested logit
model—that assume customers are homogeneous. By considering the pricing problem
under FML, we depart from this stringent assumption.

Our approach is to develop a novel characterization of the price optimization problem
under FML. Leveraging this characterization, we construct an algorithm that obtains
prices at which the revenue is guaranteed to be at least (1 − ε) times the maximum
attainable revenue for any prespecified ε > 0. Existing global optimization methods
require exponential time in the number of products to obtain such a result. Practically,
this means that only the prices of a handful of products can be optimized. The running
time of our algorithm, however, is exponential in the number of customer segments
and only polynomial in the number of products. This is of great practical value, since
in applications the number of products can be very large, while it is has been found in
various contexts that a low number of segments is sufficient to capture customer het-
erogeneity appropriately. The results of our numerical study show that our algorithm
runs fast on a broad range of problem instances. As such, our work improves the appli-
cability of price optimization in business practice, where the importance of accounting
for customer heterogeneity has long been acknowledged.

Chapter 2 is based on van de Geer and den Boer (2018).

Chapter 3: Numerical Performance of Dynamic Pricing and Learning Algorithms: A
Controlled Experiment

Chapter 3 considers the problem of dynamic pricing and learning in a competitive envi-
ronment. The learning here pertains to the fact that the seller does not know in advance
how price affects demand (e.g., because the seller does not have any historical data at its
disposal to model this relationship). By experimenting with prices, the seller can learn
the price-demand relationship and optimize prices accordingly.

Evidently, the question remains what a good approach (or algorithm) is to “learn and
earn”. The case of pricing and learning in the presence of competition has proven to
be a very challenging problem for the simple reason that the performance of an algo-
rithm depends on the (unknown) pricing behavior of competitors. A particular strategy
may work very well when used against simple pricing rules, but perform much worse
against sophisticated algorithms. Not only is theoretical understanding limited; there
also does not appear to be an extensive numerical study that compares the practical
performance of different algorithms.
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This motivated us to organize the Dynamic Pricing Challenge, held on the occasion of
the 17th INFORMS Revenue Management and Pricing Section Conference on June 29-
30, 2017, at the Centrum Wiskunde & Informatica, Amsterdam, The Netherlands. For
this challenge, participants were invited to submit dynamic pricing and learning algo-
rithms that were subsequently used to simulate a broad range of market environments
in both duopoly and oligopoly settings. The extensive simulations that we ran allow us
to describe the numerical performance of various pricing and learning algorithms and
provides insight into the performance and properties of several types of policies. Given
that the participants submitted a wide variety of algorithms—such as bandit-type mod-
els, customer choice models, econometric regression models, machine learning models,
and greedy ad-hoc approaches—we are able to relate the performance of a broad range
of algorithms to different market structures.

Chapter 3 is based on van de Geer et al. (2018a).

Chapter 4: Bayesian Modeling of Customer Choice Across Product Categories for
Promotion Optimization

This chapter entails an empirical study on modeling customer choice behavior at an
apparel retailer with an application to optimization of personalized promotions. Using
transaction data of a leading department store, we infer price sensitivities and brand
preferences on a customer level across various product categories by relying on Bayesian
customer choice modeling. More precisely, we assume that customers are utility max-
imizers and measure how brand and price affect customer utility within categories, as
well as the dependency in price sensitivity and brand preferences across categories. As
such, this study is the first in a stream of research on multi-category modeling that con-
siders durable goods, whereas existing studies focus on grocery retailing.

We find that customers exhibit similar purchasing behavior across categories. To ex-
ploit this, our framework allows us to map a customer’s preferences in one category
onto categories in which this customer did not purchase before. To show the practi-
cal relevance in targeted marketing of this, we present an algorithm that leverages the
customer-specific estimates to optimize personalized promotions, including promotions
in categories in which customers did not purchase before.

Chapter 4 is based on van de Geer and Bhulai (2018).
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Chapter 5: Data-driven Consumer Debt Collection via Machine Learning and Ap-
proximate Dynamic Programming

Chapter 5 develops and tests a framework for the data-driven scheduling of outbound
calls made by debt collectors. These phone calls are used to persuade debtors to settle
their debt, or to negotiate payment arrangements in case debtors are willing, but unable
to repay. We determine on a daily basis which debtors should be called to maximize the
amount of delinquent debt recovered in the long term, under the constraint that only a
limited number of phone calls can be made each day.

Our approach is to formulate a Markov decision process and, given its intractability,
approximate the value function based on historical data through the use of state-of-the-
art machine learning techniques. Specifically, we predict the likelihood with which a
debtor in a particular state is going to settle its debt and use this as a proxy for the value
function. Based on this value function approximation, we compute for each debtor the
marginal value of making a call. This leads to a particularly straightforward optimization
procedure, namely, we prioritize the debtors that have the highest marginal value per
phone call.

We validate our proposed methodology in a controlled field experiment conducted with
real debtors. The results show that our optimized policy substantially outperforms the
current scheduling policy that has been used in business practice for many years. Most
importantly, our policy collects more debt in less time, whilst using substantially fewer
resources—leading to a large increase in the amount of debt collected per phone call.

Chapter 5 is based on van de Geer et al. (2018b).

Scientific publications not contained in this thesis

– Moeke, D., van de Geer, R., Koole, G., and Bekker, R. (2016). On the performance
of small-scale living facilities in nursing homes: A simulation approach. Opera-
tions research for health care, 11:20–34.

Publications in popular media for the valorization of this research

– Data-Driven Debt Collection Using Machine Learning and Predictive Analytics
Blog post on DataScience.com (July 26, 2018) available at:
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https://www.datascience.com/blog/data-driven-debt-collection-machine-
learning-predictive-analytics

– Als het kouder wordt, zakt ook de prijs van een cola
Interview on NRC.nl (in Dutch, December 9, 2016) available at:
https://www.nrc.nl/advertentie/deloitte/als-het-kouder-wordt-zakt-ook-de-
prijs-van-een-cola

– Dynamic pricing in retail: Developments from science and practice
Blog post on Deloitte.com (December 8, 2016) available at:
https://www.deloitte.com/nl/nl/pages/data-analytics/articles/dynamic-
pricing-in-retail.html

– Dynamic pricing: A win-win proposition
Blog post on Deloitte.com (July 14, 2017) available at:
https://www.deloitte.com/nl/nl/pages/data-analytics/articles/dynamic-
pricing.html

– Accountability of Artificial Intelligence: how to see what is inside the black box?
Blog post on Deloitte.com (May 7, 2018) available at:
https://www.deloitte.com/nl/nl/pages/data-analytics/articles/accountability-
of-artificial-intelligence-how-to-see-what-is-inside-the-black-box.html
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Chapter 2

Price Optimization under the Finite-Mixture

Logit Model

2.1 Introduction

2.1.1 Background and motivation

For any business to be sustainably competitive it is of crucial importance to ask the
right price for the products that it sells. This is notoriously challenging, especially when
taking into account that each customer values the products differently, and that a price
change in one particular product also changes the demand for the other products in
the assortment—so-called substitution of demand across products. To give substance
to this problem, customer choice models have been adopted to describe substitution
patterns across products, and optimize prices accordingly. These choice models assume
that customers assign utility to products based on the products’ attributes, and purchase
the product that maximizes their utility (or, possibly, choose not to purchase after all).
Besides its theoretical relevance, using customer choice models is practically appealing,
given that the increased availability of customer-level purchasing data allows for its
adoption in business practice.

Existing work has considered customer choice models—most notably the multinomial
logit (MNL) and the nested logit model—that assume customers are homogeneous. This
means that the probability with which a specific product is purchased, is constant across
customers. Stated differently: any two customers purchase any particular product with
the same probability. We consider a pricing problem that departs from this stringent
assumption of customer homogeneity. Customer heterogeneity is incorporated by as-

7



8 Chapter 2

suming that each customer belongs to one of a finite number of customer segments, and
that customers choose according to a multinomial logit (MNL) model with segment-
specific parameters. The resulting model is known as the finite-mixture logit model
(FML). Our algorithm runs in polynomial time in the number of products, and obtains
prices at which the revenue is guaranteed to be at least (1 − ε) times the maximum
attainable revenue for any prespecified ε > 0.

The revenue function induced by the FML choice model is not quasiconcave in gen-
eral and possibly multimodal. Consequently, to obtain a (1− ε)-approximation with
existing global optimization methods requires exponential time in the number of prod-
ucts (see, e.g., Pintér, 2013). Such solvers typically exploit (local) Lipschitz constants of
the revenue function to systematically branch and bound subsets of the solution space.
However, this approach leads to prohibitively long computation times when the assort-
ment is larger than just a handful of products—Fowkes et al. (2013) and Cartis et al.
(2015), for example, reveal that global optimization algorithms can be used to solve
problems up to about four dimensions, after which computation times surge due to the
curse of dimensionality.

The running time of our algorithm, however, is exponential in the number of customer
segments, but only polynomial in the number of products. This is of great practi-
cal value, since the number of products that a retailer sells is potentially very large.
Meanwhile, empirical studies on customer choice behavior in retail and transportation
find that a low number of segments suffices to capture heterogeneity appropriately—
Chintagunta et al. (1991) and Wen and Lai (2010) use two segments, Greene and Hen-
sher (2003), Shen (2009), and Bhat (1997) use three segments, and Scarpa and Thiene
(2005) use four segments. In revenue management settings, usually two segments—
the business and the leisure segment—are used to incorporate customer heterogeneity.
This formed the basis for the seminal paper of Littlewood from 1972, in which he es-
tablished what became known as Littlewood’s rule (see Littlewood, 2005, for a reprint).
More recently, Hetrakul and Cirillo (2015) and Delahaye et al. (2017) used two segments
in an empirical study on customer choice behavior in the airline industry and railway
services, respectively.

2.1.2 Literature review

The MNL model, which is a special case of FML, is arguably the most famous cus-
tomer choice model and has received tremendous attention amongst both scholars and
practitioners since it was introduced by Luce (1959). It was first considered in the con-
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text of price optimization by Hanson and Martin (1996), who show by counter-example
that the profit function under MNL is not quasiconcave, and provide a path-following
heuristic for numerical optimization. In Song and Xue (2007), Dong et al. (2009), and
Li and Huh (2011) it is shown that the profit function under MNL as a function of the
purchase probabilities (or, equivalently, the market shares) is concave. This allows for
efficient maximization with respect to the purchase probabilities, which have a one-to-
one correspondence with the prices. It is also shown (Dong et al., 2009, Corollary 2) that
the optimal markup, i.e., the optimal price minus the marginal costs, is constant across
products (see also Proposition 5.1 in Aydin and Ryan (2000), Lemma 7 in Maddah and
Bish (2007), Theorem 6 in Akcay et al. (2010), and Proposition 1 in Wang (2012)). How-
ever, the constant markup property only holds when inventory is sufficient to meet all
demand at all times (Dong et al., 2009, Akcay et al., 2010) and when the price sensitiv-
ities are constant across products (Li and Huh, 2011). In Aydin and Porteus (2008) it is
shown that the first-order conditions of the revenue function under MNL are sufficient
for global optimality and, in case of constant price sensitivities, closed-form solutions
are provided by Akcay et al. (2010).

One of the major drawbacks of MNL is that it assumes a very specific substitution pat-
tern, known as the independence under irrelevant alternatives (IIA) property. The IIA
property implies that for any two alternatives, the ratio of the probability of choosing
one over the probability of choosing the other is independent of the composition or the
attributes of the other alternatives. In the case of price optimization, this implies that
an increase in the price of one product increases the purchase probabilities of all other
products with the same proportion.

Other choice models have been considered in the literature that alleviate the IIA prop-
erty (but do assume customer homogeneity). The most prominent is the nested logit
(NL) model, which generalizes MNL by assuming that customers first choose a nest (a
subset) of products, and subsequently choose a product from that particular nest ac-
cording to an MNL model. For the NL model, it holds that the profit is concave in
the purchase probabilities when the price sensitivities are constant within nests (Li and
Huh, 2011). In the more general case of product-specific price sensitivities, Gallego and
Wang (2014) show amongst other things that the adjusted markup, which is defined as
the optimal price minus the marginal costs minus the reciprocal of the price sensitivity,
is constant for all the products within a nest. For price and assortment optimization
under NL with price bounds, Rayfield et al. (2015) provide numerical approximation
methods. Finally, Li et al. (2015) and Huh and Li (2015) consider a more general version
of the NL model in which nests can contain nests of products, leading to a tree structure
of nests of arbitrary depth. Evidently, choosing an appropriate composition of nests can
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be challenging in practice (Koppelman and Bhat, 2006).

Recently, other choice models than MNL and NL have been considered in the literature.
Alptekinoğlu and Semple (2016) consider the problem of optimal pricing under the ex-
ponomial choice model, in which other distributional assumptions than MNL and NL
are imposed, which suit certain applications better. Li and Webster (2017a) consider
the paired combinatorial logit model. This alternative to NL models choice settings in
which the sequence of choices, as modeled in NL by the nested structure, is not ap-
parent. Zhang et al. (2018) study pricing problems when customers choose according
to any model from the family of generalized extreme value choice models, which in-
cludes MNL, NL, and the paired combinatorial logit model. In this general setting,
Zhang et al. (2018) derive a closed-form solution for optimal prices in case the price
sensitivity is constant across products. Finally, Dong et al. (2018) consider the pricing
problem when customers choose according to the Markov chain choice model, in which
customers transition between products until a product is purchased or the no-purchase
option is reached. Amongst other things, Dong et al. (2018) show in a monopolistic
setting how to obtain the optimal prices efficiently.

In all of the aforementioned references, except Hanson and Martin (1996), customers are
assumed to be homogeneous: the expected utility for a particular product is assumed
to be constant across customers. Consequently, any two customers purchase a partic-
ular product with the same probability. This is problematic, since the consequences
of ignoring heterogeneity when it is present are potentially severe, given that it may
lead to biased parameter estimates (see, e.g., Hsiao, 2014, p. 10) and consequently to
sub-optimal prices. Whilst the importance of incorporating customer heterogeneity in
choice models has long been acknowledged (Guadagni and Little, 1983), progress on
price optimization under models that allow for customer heterogeneity has been lim-
ited.

The FML model, which is considered in this chapter, overcomes the restrictive assump-
tions of a homogeneous population and IIA by assuming that customers belong to one
of a number of customer segments. Each of these customer segments chooses accord-
ing to an MNL model with segment-specific parameters. As such, FML belongs to the
family of mixed logit models, which are flexible enough to approximate any customer
choice model up to any level of desired accuracy (McFadden et al., 2000). The liter-
ature on pricing under FML is sparse—the only two references that we are aware of
are Hanson and Martin (1996) and Li and Webster (2017b). The former provides no
structural results nor (global) optimality guarantees on the solution obtained. The lat-
ter shows that, in general, the profit function under FML as a function of the purchase
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probabilities is not (quasi)concave. The paper provides an efficient algorithm in case
the revenue function is quasiconcave, but no conditions are provided that ensure qua-
siconcavity of the revenue function, which limits the applicability of their algorithm.
For non-quasiconcave revenue functions a gradient-descent approach is proposed, but
bounds on the quality of the obtained solution are not provided.

2.1.3 Contributions

We propose an algorithm that optimizes revenue with respect to prices when customers
choose according to the FML customer choice model. Our algorithm obtains prices at
which the revenue is guaranteed to be at least (1− ε) times the maximum attainable
revenue, for any prespecified ε > 0. The running time is exponential in the number of
customer segments, but only polynomial in the number of products. This is beneficial,
since typically a small number of customer segments suffices to capture customer het-
erogeneity appropriately (see references in Section 2.1.1), whilst the number of products
in the assortment of a retailer is potentially very large. Our numerical experiments show
that the algorithm performs very well in practice—the computation times vary from a
few seconds to minutes on a single CPU.

To develop our algorithm, we derive a novel characterization of the problem of optimiz-
ing prices under FML. The approach is based on a reparameterization of the original
revenue maximization problem, in which we treat the no-purchase probability of each
segment—the probability that a customer from a particular segment does not purchase
anything—as a parameter. We show that, when equality constraints are imposed on
the no-purchase probabilities, the problem of optimizing prices can be formulated as
a concave maximization problem with linear constraints. Using this result, we reduce
the initial problem of finding the optimal prices, to the problem of finding the optimal
no-purchase probabilities. This results in a dimension reduction in case the number of
segments is smaller than the number of products.

To optimize revenue with respect to prices under equality constraints on the no-purchase
probabilities, we formulate the Lagrangian and provide a closed-form solution for the
dual problem. Using this dual problem, we derive a local Lipschitz constant of the
revenue as a function of the no-purchase probabilities. In addition, we formulate a lin-
ear program that verifies whether a given vector is in the set of attainable no-purchase
probabilities—that is, the linear program verifies if prices exist that induce a vector of
no-purchase probabilities equal to this given vector.

These results are leveraged to obtain a branch-and-bound algorithm that systematically
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searches the space of all possible no-purchase probabilities. The algorithm terminates
when the obtained solution meets the desired accuracy, and is guaranteed to terminate
in a finite number of steps. The running time grows only polynomially in the number
of products, and is shown to run fast in numerical experiments. As such, our work im-
proves the applicability of price optimization in business practice, where the importance
of accounting for customer heterogeneity has long been acknowledged.

2.1.4 Outline

The rest of this chapter is organized as follows. In Section 2.2, we formulate the revenue
optimization problem under the FML choice model. Then, in Section 2.3, we develop a
new characterization of this problem and provide our proposed optimization algorithm.
Section 2.4 contains the results of our numerical experiments. An alternative approach
to optimize prices under FML is presented in Section 2.5. Detailed mathematical proofs
are contained in Section 2.A.

2.2 Problem Description

We consider the problem of optimizing the expected revenue with respect to prices for
a range of products N := {1, 2, . . . , n}, when the population of customers consists of
customer segments M := {1, 2, . . . , m}, for positive integers n and m. The share of
customer segment c ∈ M equals wc ∈ (0, 1) with ∑c∈M wc = 1, i.e., a randomly selected
customer belongs to segment c with probability wc. Customers choose according to
an MNL model with segment-specific parameters. More precisely, a customer from
segment c ∈ M assigns (random) utility Uci(pi) to product i ∈ N at price pi ∈ R, given
by

Uci(pi) := aci − bi pi + εci, (2.1)

where εci is i.i.d. standardized Gumbel distributed (i.e., P(εci ≤ x) = exp (− exp (−x))
for all x ∈ R), aci ∈ R is the baseline product valuation by customers from segment
c for product i, and bi ∈ R++ is the product-specific price sensitivity; here, and in the
rest of this work, we denote R+ := [0, ∞) and R++ := (0, ∞). We set Uc0 := εc0 with
εc0 i.i.d. standardized Gumbel distributed as the utility for the outside option, i.e., the
utility derived from not buying any product from the product set N. This is a standard
approach in customer choice modeling to ensure that the parameters in the model are
identified when the model’s parameters are estimated from data (Train, 2009).
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Then, the probability that a customer from segment c ∈ M purchases product i ∈ N
under prevailing prices p = (p1, . . . , pn) ∈ Rn equals

qci(p) := P

{
arg max

j∈N
Ucj(pj) = i

}
=

exp (aci − bi pi)

1 + ∑j∈N exp
(
acj − bj pj

) ,

which is well defined, since ties in utility occur with probability zero (see Train (2009)
for a discussion and a derivation of the choice probabilities). Furthermore,

qc0(p) :=
1

1 + ∑j∈N exp
(
acj − bj pj

)
denotes the no-purchase probability of segment c ∈ M, i.e., the probability that a cus-
tomer of segment c does not purchase anything. Hence, the total expected revenue per
customer equals

Π(p) := ∑
c∈M

wc ∑
j∈N

pjqcj(p),

and the optimization problem

max
p∈Rn

Π(p) (max-rev)

is the problem of interest in this chapter. In the following section we propose our solu-
tion method to this problem.

2.3 Solution Method

In general, max-rev lacks any useful structure that can be leveraged to solve it to opti-
mality efficiently. For example, the revenue function Π is in general not (quasi)concave
in prices and possibly multimodal—for numerical examples of this see Li and Webster
(2017b). By relying on standard numerical optimization methods, such as gradient de-
scent, one might converge to a sub-optimal local maximum, without being able to assess
the quality of the obtained solution. In this section, we present a solution method for
max-rev that provides quality guarantees on the obtained solution.

2.3.1 Outline

First, in Section 2.3.2, we show that the problem can be reparameterized so that the
revenue can be optimized with respect to the no-purchase probabilities, instead of with
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respect to prices. More precisely, we show that, when we impose equality constraints on
the no-purchase probabilities, and reparameterize appropriately, the problem of maxi-
mizing revenue with respect to prices is a concave maximization problem. Then, in
Section 2.3.3, we show that for the aforementioned reparameterized and constrained
problem, strong duality holds. Also, we provide a closed-form solution for the dual
problem. As a result, for any m-vector of feasible no-purchase probabilities, we are able
to maximize the revenue over all prices such that the no-purchase probabilities equal
this m-vector. Here, a vector x ∈ (0, 1)m of no-purchase probabilities is feasible, if a
price vector p ∈ Rn exists such that qc0(p) = xc for all c ∈ M. In Section 2.3.4, we derive
a local upper bound on the attainable revenue over subsets of no-purchase probabili-
ties. More precisely, for any m-dimensional hypercube in (0, 1)m that contains feasible
no-purchase probabilities, we derive an upper bound on the revenue, under the con-
straint that the no-purchase probabilities are in that hypercube. Finally, in Section 2.3.5,
we formulate a linear program to verify for any m-dimensional hypercube in (0, 1)m,
whether it contains any feasible no-purchase probabilities. If this is the case, the linear
program provides a feasible vector of no-purchase probabilities that is in this hypercube.

We use all these ingredients to construct a branch-and-bound algorithm in Section 2.3.6.
This algorithm systematically searches for the no-purchase probabilities in (0, 1)m that
correspond with the optimal prices. We show in Theorem 2.1 that the algorithm termi-
nates in finite steps an provides a (1− ε)-approximation for max-rev. In addition, we
show in Theorem 2.2 that the time complexity of this algorithm is exponential in m, but
only polynomial in n.

2.3.2 Problem reparameterization

In the following proposition we show that a global maximizer of Π exists, and we pro-
vide lower and upper bounds on global maximizers of Π.

Proposition 2.1. A global maximizer of Π exists, and for any global maximizer p?, it holds
that

¯
pj ≤ p?j ≤ p̄j, for all j ∈ N,

where

¯
pj := b−1

j and p̄j := b−1
j + max

c∈M
max
p∈Rn ∑

i∈N
piqci(p), for all j ∈ N.

Sketch of proof (detailed proof in Appendix 2.A.1). First, to show existence of a global max-
imizer, we construct a compact set in the domain of Π that must contain all maximizers
(if any exist). Then, since Π is bounded and continuous on this compact set, by the
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extreme value theorem a global maximizer exists. Then, we show that maximizers only
occur in the interior of this compact set, which means that maximizers are attained at
stationary points. Finally, based on the first-order conditions, we derive the bounds
stated in the proposition.

Remark 2.1. To compute p̄j for all j ∈ N, as defined in Proposition 2.1, we require a
solution to the optimization problem maxp∈Rn pjqcj(p) for all c ∈ M. This problem can
be solved efficiently, since, for each c ∈ M, maxp∈Rn pjqcj(p) is the unique solution to a
univariate fixed-point equation (Theorem 2, Li and Huh, 2011).

Using Proposition 2.1, we reformulate max-rev as follows. For p ∈ Rn, let

q0(p) := [q10(p), . . . , qm0(p)]> ,

and define the set

X :=
{

q0(p) : p ∈ [
¯
p, p̄]

}
, (2.2)

where
¯
p and p̄ are the column vectors with elements

¯
pj and p̄j, respectively, for j =

1, . . . , n. Then, we formulate max-rev as the following two-stage problem,

max
x∈X

max
p∈[

¯
p,p̄]

Π(p) (2.3)

such that q0(p) = x.

Thus, the inner problem in (2.3) maximizes the expected revenue with respect to prices
under the constraint that the no-purchase probabilities equal x ∈ X, and the outer prob-
lem maximizes the revenue over the set of no-purchase probabilities X. We now show
that the inner problem in (2.3) can be reformulated as a concave maximization problem
with linear constraints. To this end, let

scj := eacj for c ∈ M, j ∈ N,

and let
k j := b−1

j
[
w1s1j, . . . , wmsmj

]> , for all j ∈ N.

We change the decision variables from pj to zj = e−pjbj for all j ∈ N, and we define
z := [z1, . . . , zn]>. Correspondingly, let

¯
zj := e− p̄jbj and z̄j := e−¯

pjbj be lower and
upper bounds, respectively, on zj, for all j ∈ N. In addition, let

¯
z := [

¯
z1, . . . ,

¯
zn]> and

z̄ := [z̄1, . . . , z̄n]>. The following lemma presents a concave reparameterization of the
inner maximization problem of (2.3).
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Lemma 2.1. For all x ∈ X, the maximization problem

max
p∈[

¯
p,p̄]

Π(p)

such that qc0(p) = xc, ∀c ∈ M

is equivalent to

max
z∈[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j x

such that 1 + ∑
j∈N

scjzj =
1
xc

, ∀c ∈ M,

which is a concave maximization problem with linear constraints.

Sketch of proof (detailed proof in Appendix 2.A.1). The equivalence of the two maximiza-
tion problems follows from a change of variables from pj to zj = e−pjbj for all j ∈ N,
and a number of monotonic transformations. The problem is concave since the function
− log(y)y is concave on y ∈ (0, e−1], k>j x > 0 for all x ∈ X and j ∈ N, and zj ∈ (0, e−1],
for all j ∈ N (this follows from the fact that zj ∈ [

¯
zj, z̄j], and 0 <

¯
zj < z̄j < e−1, for all

j ∈ N). Clearly, the constraints are linear.

Lemma 2.1 shows that, after imposing equality constraints on the no-purchase probabil-
ities, the problem of maximizing revenue can be formulated as a concave maximization
problem. For further reference, we formally define the concave maximization problem
from Lemma 2.1 as follows. For x ∈ X,

π(x) := max
z∈[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j x (cnstr-rev(x))

such that 1 + ∑
j∈N

scjzj =
1
xc

, ∀c ∈ M.

Here, cnstr-rev(x) denotes the maximization problem (cnstr-rev is an abbreviation
for “constrained revenue”) and π(x) denotes the maximum attainable revenue when
the no-purchase probabilities are constrained to x ∈ X. It is a direct consequence of
Lemma 2.1 that

max
x∈X

π(x) = max
p∈[

¯
p,p̄]

Π(p). (2.4)
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In fact, a (1− ε)-approximation of the revenue function in the no-purchase probabilities
has a one-to-one correspondence with a (1− ε)-approximation of the revenue function
in prices, for each ε > 0, which we show in the following proposition.

Proposition 2.2. Let x′ ∈ X, let z′ ∈ [
¯
z, z̄] be a maximizer of cnstr-rev(x′), and let ε > 0.

If
π(x′) ≥ (1− ε)max

x∈X
π(x),

then, for p′ :=
[
−b−1

1 log z′1, . . . ,−b−1
n log z′n

]>
, it holds that p′ ∈ [

¯
p, p̄], and

Π(p′) ≥ (1− ε) max
p∈[

¯
p,p̄]

Π(p).

Sketch of proof (detailed proof in Appendix 2.A.1). Let x′ ∈ X and ε > 0 be as in the state-
ment of the proposition and let z′ ∈ [

¯
z, z̄] be a solution to cnstr-rev(x′). First, we

show that p′ ∈ [
¯
p, p̄] by construction of cnstr-rev(x′). Then, we show by a number of

monotonic transformations that Π(p′) = π(x′). Finally, we use Equation (2.4) to obtain
the claimed inequality.

This proposition implies that, to obtain a (1− ε)-approximation for the maximum at-
tainable revenue under the FML choice model, it suffices to obtain a (1− ε)-approxima-
tion to maxx∈X π(x). In the following sections, we develop an algorithm to obtain such
an approximation efficiently.

2.3.3 Strong duality

We proceed by taking the Lagrangian of cnstr-rev(x) for x ∈ X and, subsequently,
constructing the dual. This allows for efficient evaluation of π(x), for all x ∈ X, as
well as for computing upper bounds on π over subsets of X, which we leverage in our
proposed algorithm.

For x ∈ X, let

µ(x) :=
[

1− x1

x1
, . . . ,

1− xm

xm

]>
,

and let S ∈ Rm×n be the matrix with elements scj for all c ∈ M and j ∈ N. This allows
us to write the m equality constraints in cnstr-rev(x) as Sz = µ(x), and define the
Lagrangian of cnstr-rev(x) by

L(z, x, λ,
¯
ν, ν̄) := − ∑

j∈N
zj log(zj)k>j x + λ> (Sz− µ(x))−

¯
ν>(z−

¯
z) + ν̄>(z− z̄),
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where z ∈ (0, ∞)n and x ∈ X, and where (λ,
¯
ν, ν̄) ∈ Rm ×Rn ×Rn are the Lagrange

multipliers. Furthermore, define

z̃j(x, λ,
¯
ν, ν̄) := exp

(
λ>sj + ν̄j − ¯

νj

k>j x
− 1

)
, (2.5)

where x ∈ X, (λ,
¯
ν, ν̄) ∈ Rm ×Rn ×Rn, and sj := [s1j, . . . , smj]

> ∈ Rm is the jth column
of S, for all j ∈ N. The following proposition concerns duality of cnstr-rev(x).

Proposition 2.3. For all x ∈ X and (λ,
¯
ν, ν̄) ∈ Rm ×Rn ×Rn, the dual of cnstr-rev(x)

equals

D(x, λ,
¯
ν, ν̄) := max

z∈Rn
+

L(z, x, λ,
¯
ν, ν̄) (2.6)

= ∑
j∈N

z̃j(x, λ,
¯
ν, ν̄)k>j x− λ>µ(x) +

¯
ν>

¯
z− ν̄> z̄, (2.7)

and strong duality holds:

min
(λ,

¯
ν,ν̄)∈Rm×Rn

+×Rn
+

D(x, λ,
¯
ν, ν̄) = π(x). (2.8)

In addition, the dual problem on the left-hand side of (2.8) has a unique minimizer.

Sketch of proof (detailed proof in Appendix 2.A.2). The proof is obtained by observing that
L is concave in z, so that we can maximize L with respect to z by solving the first-
order conditions with respect to z. Strong duality holds by Slater’s condition (Boyd and
Vandenberghe, 2004, p. 226), since the objective function in cnstr-rev(x) is concave,
and the constraints are affine. We show unicity of a solution to the left-hand side of (2.8)
by showing that D is strictly convex in (λ,

¯
ν, ν̄) for all x ∈ X.

2.3.4 Local revenue bounds

In this section, we derive an upper bound on π over subsets of X. This will serve as an
input in the branch-and-bound algorithm proposed in Section 2.3.6.

Denote by ‖ · ‖ the infinity norm, i.e., ‖v‖ = maxi∈{1,...,n} |vi| for v ∈ Rn and, corre-
spondingly, denote by B(x, r) the closed infinity-norm ball (or hypercube) with center
x and radius r > 0: B(x, r) = {y : ‖x − y‖ ≤ r}. For x ∈ X and r > 0 such that
B(x, r) ⊂ (0, 1)m, we derive an upper bound on maxx′∈B(x,r)∩X π(x′) by constructing a
local Lipschitz constant of the dual D as a function of x. We formalize this as follows.
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For x ∈ X, let

(λx,
¯
νx, ν̄x) := arg min

(λ,
¯
ν,ν̄)∈Rm×Rn

+×Rn
+

D(x, λ,
¯
ν, ν̄) (2.9)

the solution to the dual problem (2.8) (note that (2.9) is well defined by Proposition 2.3),
and for x ∈ X and r > 0 let

L(x, r) := max
c∈M

max

{
λx

c
(xc − sgn(λx

c ) · r)2 + wc ∑
j∈N

scj

bj
φ(z̃j(x + r, λx,

¯
νx, ν̄x)),

−λx
c

(xc + sgn(λx
c ) · r)2 − wc ∑

j∈N

scj

bj
φ(z̃j(x− r, λx,

¯
νx, ν̄x))

}
, (2.10)

where φ(y) := −y log(y), y ∈ R++, and sgn(·) denotes the sign operator. Furthermore,
for x ∈ (0, 1)m and (λ,

¯
ν, ν̄) ∈ Rm ×Rn ×Rn, denote by ∇D(x, λ,

¯
ν, ν̄) the gradient of

D with respect to the variable x, i.e., with respect to the first argument, evaluated at
the point (x, λ,

¯
ν, ν̄). The following lemma establishes that L(x, r) is a local Lipschitz

constant of D.

Lemma 2.2. Let x ∈ X and r > 0 such that B(x, r) ⊂ (0, 1)m. Then,

max
x̃∈B(x,r)

‖∇D(x̃, λx,
¯
νx, ν̄x)‖ ≤ L(x, r). (2.11)

Sketch of proof (detailed proof in Appendix 2.A.3). To establish (2.11), we first derive an ex-
pression for ∇D by differentiating D with respect to its first argument. Then, we ob-
serve that each element of ∇D is the sum of monotone functions in x, which allows us
to bound the gradient accordingly.

Let s̄ := maxc∈M,j∈N scj, ¯
b := minj∈N bj, let

¯
σ be the smallest singular value of S, and let

W : R+ → R+ be the Lambert function (i.e., the inverse of yey). For x ∈ X and r > 0
such that B(x, r) ⊂ (0, 1)m, let

K(x, r) := ns̄
¯
b−1

(
max
c∈M

xc + r
xc − r

+
n−1/2

¯
b−1W (ns̄)

¯
σ minc∈M xc(xc − r)

)

and

πu(x, r) := π(x) + r · (L(x, r) ∧ K(x, r)) . (2.12)
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The following proposition establishes that (2.12) is an upper bound on π over B(x, r) ∩
X, for all x ∈ X and r > 0 such that B(x, r) ⊂ (0, 1)m.

Proposition 2.4. Let x ∈ X and r > 0 such that B(x, r) ⊂ (0, 1)m. Then,

max
x̃∈B(x,r)∩X

π(x̃) ≤ πu(x, r). (2.13)

Sketch of proof (detailed proof in Appendix 2.A.3). Let x ∈ X and r > 0 such that B(x, r) ⊂
(0, 1)m. First, suppose L(x, r) ≤ K(x, r). By strong duality (Proposition 2.3), it fol-
lows that π(x̃) = D(x̃, λx̃,

¯
νx̃, ν̄x̃) for all x̃ ∈ B(x, r) ∩ X. Then, by using weak duality—

essentially relaxing the Lagrange multipliers—we bound π from above over B(x, r)∩X.
Finally, we observe that D is Lipschitz continuous in its first argument, with Lipschitz
constant L(x, r). This allows us to bound the dual from above over B(x, r) ∩ X using
Lemma 2.2. Now, suppose K(x, r) ≤ L(x, r). For each x̃ ∈ B(x, r) ∩ X, we construct an
arc that is completely contained in B(x, r) ∩ X and connects x with x̃. Then, we show
that π is differentiable over this arc and show that K(x, r) is an upper bound on the
absolute value of the derivative of π. Finally, we use the mean-value theorem to obtain
the claimed upper bound.

Remark 2.2. In practice, for x ∈ X and r > 0 such that B(x, r) ⊂ (0, 1)m, in (2.12) it
virtually always holds that L(x, r) < K(x, r). The purpose of the function K is to show
(in Section 2.3.6) that the running time of our proposed algorithm grows polynomially
in n.

2.3.5 Feasibility

In this section, we show how to verify, for a given x ∈ (0, 1)m, whether x ∈ X, i.e.,
whether the inner problem in (2.3) is feasible. Recall that x ∈ X if a solution p ∈ [

¯
p, p̄]

exists to the system of non-linear equations q0(p) = x. This condition is by no means
trivial to verify. We illustrate X by means of the following example, which also reveals
that X is non-convex in general.

Example 1 Consider the case with two segments and four products, i.e., m = 2 and n =

4. Let the utilities of the segments, as defined in (2.1), be given by (a11, a12, a13, a14) =

(1, 2, 3, 4), (a21, a22, a23, a24) = (2, 1, 2, 1), and b = (0.03, 0.02, 0.025, 0.01). Let the cus-
tomer segment shares be w1 = 0.5 and w2 = 0.5. By Proposition 2.1,

¯
p =

[
33 1

3 , 50, 40, 100
]

and p̄ ≈ [255.01, 271.67, 261.67, 321.67]. Figure 2.1 illustrates X in the two-dimensional
plane, which also shows that X is non-convex.
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Figure 2.1: The dark area represents X for Example 1.

Our approach is to construct a linear program that verifies, for any given x ∈ (0, 1)m

and r > 0 such that B(x, r) ⊂ (0, 1)m, both whether x ∈ X and whether B(x, r) ∩ X 6= ∅.
In case B(x, r) ∩ X 6= ∅, but x /∈ X, the linear program delivers a vector in B(x, r) ∩ X.
Paraphrased verbally: using our proposed linear program, we can determine for any
hypercube in (0, 1)m if the hypercube’s center point is feasible. If this is not the case, we
can determine if there is another point in the hypercube that is feasible.

Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m, and consider the following linear
program:

min γ (LP(x, r))

such that ∑
j∈N

scjzj + δ+c − δ−c = µc(x), c = 1, . . . , m (2.14)

γ ≥ δ+c + δ−c , c = 1, . . . , m (2.15)

δ+c ≤ µc(x)− µc(x + r), c = 1, . . . , m (2.16)

δ−c ≤ µc(x− r)− µc(x), c = 1, . . . , m (2.17)

¯
zj ≤ zj ≤ z̄j, j = 1, . . . , n (2.18)

γ ∈ R

δ+, δ− ∈ Rm
+,

where γ, z, δ+, and δ− are the decision variables. The following proposition formalizes
the use of LP(x, r).

Proposition 2.5. Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m. Then,

B(x, r) ∩ X 6= ∅ if and only if LP(x, r) is feasible.
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Sketch of proof (detailed proof in Appendix 2.A.4). Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m.
(⇒) Suppose that B(x, r) ∩ X 6= ∅. To show that LP(x, r) is feasible, we provide a set of
decision variables that satisfies all constraints of LP(x, r). (⇐) Suppose that LP(x, r) is
feasible. To show that B(x, r)∩X 6= ∅, we construct an xδ such that xδ ∈ B(x, r)∩X.

In our optimization algorithm, provided in Section 2.3.6, we rely on Proposition 2.5 to
determine if a given hypercube in (0, 1)m contains a feasible point, i.e., if it contains
an attainable vector of no-purchase probabilities. If this is not the case, we can safely
disregard the hypercube, since then it does not contain a maximizer of π. If a given
hypercube does contain a feasible vector of no-purchase probabilities, the following
corollary establishes how to obtain such a feasible vector.

For x ∈ (0, 1)m and δ+, δ− ∈ Rm
+, define

χ(x, δ+, δ−) :=

[
x1

1 + x1 ·
(
δ−1 − δ+1

) , . . . ,
xm

1 + xm ·
(
δ−m − δ+m

)]> .

Corollary 2.1. Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m, and suppose that
B(x, r) ∩ X 6= ∅. Let (γ, z, δ+, δ−) be a solution to LP(x, r). Then,

χ(x, δ+, δ−) ∈ B(x, r) ∩ X. (2.19)

If it also holds that x ∈ X, then

χ(x, δ+, δ−) = x. (2.20)

Sketch of proof (detailed proof in Appendix 2.A.4). The proof is a direct consequence of the
proof of Proposition 2.5.

Corollary 2.1 reveals that, if x ∈ (0, 1)m and r > 0 are such that B(x, r) ∩ X 6= ∅, but
x /∈ X, the mapping χ can be used to obtain a feasible point in B(x, r). In the following
proposition, we provide an interpretable characterization of χ.

Proposition 2.6. Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m and B(x, r)∩X 6= ∅.
Let (γ, z, δ+, δ−) be a solution to LP(x, r). Then,

min
x′∈B(x,r)∩X

‖µ(x)− µ(x′)‖ = ‖µ(x)− µ(χ(x, δ+, δ−))‖.

Sketch of proof (detailed proof in Appendix 2.A.4). We prove the claim by showing that if
a x′ ∈ B(x, r) ∩ X exists such that x′ 6= χ(x, δ+, δ−) and ‖µ(x) − µ(x′)‖ < ‖µ(x) −
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µ(χ(x, δ+, δ−))‖, then γ is no minimizer of LP(x, r), leading to contradiction.

Summarizing, for x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m, only if B(x, r) ∩
X 6= ∅ then, by Proposition 2.5, a solution to LP(x, r) exists. Furthermore, for any
solution (γ, z, δ+, δ−) to LP(x, r), by Corollary 2.1, χ(x, δ+, δ−) ∈ B(x, r) ∩ X. In our
optimization algorithm, provided in Section 2.3.6, we use these results to determine, for
a given hypercube in (0, 1)m, if it contains feasible points and, if it does, evaluate the
revenue function π at a feasible point in the hypercube to obtain bounds on π in that
hypercube.

2.3.6 Branch-and-bound optimization algorithm

In this section, we present a branch-and-bound algorithm that delivers a (1 − ε)-ap-
proximation for the revenue maximization problem when customers choose accord-
ing to the FML choice model. We refer to this algorithm as BNB(ε). For any ε > 0,
BNB(ε) delivers a vector of no-purchase probabilities x′ ∈ X such that π(x′) ≥ (1−
ε)maxx∈X π(x). By Proposition 2.2, this x′ corresponds with a p′ ∈ Rn such that
(1− ε)Π(p′) ≥ maxp∈Rn Π(p).

Algorithm description and explanation

We present BNB(ε) in the pseudo-code block Algorithm 1, in which we write

¯
x := q0(

¯
p) and x̄ := q0( p̄),

which are lower and upper bounds, respectively, on the no-purchase probabilities. We
first explain the workings of BNB(ε) by means of Example 1 from Section 2.3.5. There-
after, we formally establish that the algorithm terminates in finite steps and delivers a
(1− ε)-approximation for ε > 0. Note that, in this example, there are four products, but
we only optimize over the two no-purchase probabilities of the two customer segments.

Figure 2.2 illustrates the first six iterations of BNB(ε) for Example 1 with ε = 0.01, where
one iteration is understood to be one run over the code block under the while clause (i.e.,
one run over the lines 5-23). We now explain, by means of Figure 2.2, how we initialize
BNB(ε), and what one iteration of BNB(ε) comprehends.

Initialization. We initialize BNB(ε) by constructing a hypercube that contains the set
of all attainable no-purchase probabilities X. More precisely, BNB(ε) is initialized by
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Algorithm 1 BNB(ε)

1:
¯
π ← Π(

¯
p)

2: π̄ ← ∞
3: r ← 1

2 maxc∈M(x̄c − ¯
xc)

4: X1 ← {¯
x + r}

5: while (1− ε)π̄ >
¯
π do

6: π̄ ← −∞
7: X2 ← ∅
8: for x in X1 such that B(x, r) ∩ X 6= ∅ do . Check feasibility
9: (γ, z, δ+, δ−)← a solution to LP(x, r)

10: xδ ← χ(x, δ+, δ−)
11: rδ ← r + ‖x− xδ‖
12: if π(xδ) ≥

¯
π then

¯
π ← π(xδ), x? ← xδ . Update current best solution

13: if B(xδ, rδ) ⊂ (0, 1)m then
14: if πu(xδ, rδ) ≥

¯
π then X2 ← X2 ∪ {x} . Stage for branching

15: if πu(xδ, rδ) ≥ π̄ then π̄ ← πu(xδ, rδ) . Update upper bound
16: else
17: X2 ← X2 ∪ {x} . Stage for branching
18: π̄ ← ∞ . Update upper bound
19: r ← 1

2 r
20: X1 ← ∅
21: for x in X2 do . Branching
22: for ω in {−1, 1}m do
23: X1 ← X1 ∪ {x + ωr}
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Figure 2.2: The first six iterations of BNB(ε) for Example 1, starting top left. The dashed
rectangle in each pane represents [

¯
x, x̄], the green cubes possibly contain a maximizer,

the grey cubes are infeasible, and the red cubes are sub-optimal.

constructing r ∈ R++ on line 3 such that B(
¯
x + r, r) is the smallest hypercube that

contains [
¯
x, x̄]. Observe that this implies that B(

¯
x + r, r) ⊇ X, since, by definition of X,

¯
x, and x̄, and by construction of r, it holds that

X ⊆ [
¯
x, x̄] ⊆ B(

¯
x + r, r) ⊂ (0, 1)m. (2.21)

In Figure 2.2, B(
¯
x + r, r) is the green cube in the first pane, and the dashed rectan-

gle represents [
¯
x, x̄]. The variable

¯
π is used to store the current best lower bound on

maxx∈X π(x) and is initialized with Π(
¯
p). In each iteration, BNB(ε) constructs an upper

bound on maxx∈X π(x), which is stored in π̄. This variable is initialized with ∞.

Checking feasibility. At the beginning of each iteration at line 5, r ∈ R++ and X1

are such that the set
⋃

x∈X1
B(x, r) contains all maximizers of π (we show this in the

proof of Theorem 2.1). On line 8, for each x ∈ X1, we verify if B(x, r) ∩ X 6= ∅ by
verifying if LP(x, r) is feasible (see Proposition 2.5). Clearly, for each x ∈ X1 such that
B(x, r) ∩ X = ∅, it holds that B(x, r) does not contain any maximizers—these are the
grey cubes in Figure 2.2 and are discarded from the search space.

Bounding revenue. For each x ∈ X such that B(x, r) ∩ X 6= ∅, we solve LP(x, r)
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and construct xδ and rδ (on line 10 and 11) such that xδ ∈ X (by Corollary 2.1) and
B(xδ, rδ) ⊇ B(x, r) (by construction of rδ). Recall that, by Corollary 2.1, xδ = x and
rδ = r, if x ∈ X. Then, on line 12, we evaluate π at xδ. In case π(xδ) exceeds the lower
bound

¯
π, we set π(xδ) as the new lower bound. Subsequently, if B(xδ, rδ) ⊂ (0, 1)m,

we check on line 14 if our upper bound on π over B(xδ, rδ) ∩ X, hence over B(x, r) ∩ X,
exceeds the current best lower bound

¯
π (see Proposition 2.4). If this is the case, then

B(x, r) possibly contains a maximizer of π, and we store x in X2 for further considera-
tion. In Figure 2.2, these cubes are colored green. If this is not the case, i.e., if the upper
bound on the revenue over B(xδ, rδ) ∩ X does not exceed the current best lower bound,
we disregard this cube, i.e., we do not add it to X2. In Figure 2.2, these cubes are colored
green. If for some x ∈ X1, it holds on line 13 that B(xδ, rδ) 6⊂ (0, 1)m, then we add x to
X2 for further consideration and set the upper bound on the revenue to ∞.

Branching hypercubes. On lines 19-23, for each x ∈ X2, i.e., for each hypercube that
possibly contains a maximizer of π, B(x, r) is branched into 2m smaller hypercubes of
equal size. More precisely, we divide the radius r by two, and for each x ∈ X2, we
generate 2m new equidistant centers, and store these in X1. In Figure 2.2, this can be
seen from the fact that the green cubes are partitioned into four smaller cubes in each
iteration (and the red and grey cubes not).

Convergence guarantee and computation time

The following theorem establishes that, for ε > 0, BNB(ε) obtains a (1− ε)-approxima-
tion for the revenue maximization problem under the FML choice model.

Theorem 2.1. For any ε > 0, BNB(ε) terminates in a finite number of steps and delivers a
p′ ∈ Rn such that

Π(p′) ≥ (1− ε) max
p∈Rn

Π(p). (2.22)

Sketch of proof (detailed proof in Appendix 2.A.5). We first derive a finite upper bound on
the number of iterations required for BNB(ε) to terminate. Subsequently, we show that,
if BNB(ε) terminates, then (2.22) holds by showing that BNB(ε) never discards hyper-
cubes that contain a maximizer of π.

The following result shows that the running time of BNB grows exponentially in m, but
only polynomially in n.

Theorem 2.2. The time complexity of BNB(ε) is O
(
ε−mn5.5+3m).
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Sketch of proof (detailed proof in Appendix 2.A.5). We show that the total number of hyper-
cubes evaluated by BNB(ε) is O(ε−mn3m) and that the time complexity of evaluating a
single hypercube is O(m5.5n5.5). The latter follows from the time complexity of solving
a linear program.

Theorem 2.2 is a theoretical result that reveals that the running time of our algorithm
grows polynomially in the number of products. In the following section, we provide
the results from our numerical study.

2.4 Numerical Study

2.4.1 Preliminaries

In this section, we present a numerical study on the performance of BNB. In particular,
we illustrate how the running time of BNB depends on the number of segments (m) and
the number of products (n). We implemented BNB in Python 3, and our implementation
is publicly available at https://github.com/rubenvdg/fml-pricing.

We solve the linear program LP by using the Python library cvxopt (Andersen et al.,
2018). To evaluate π on line 12 of BNB, we numerically solve the dual problem (2.8) by
using the Broyden-Fletcher-Goldfarb-Shanno algorithm (Nocedal and Wright, 1999), as
implemented in the SciPy library (Jones et al., 2001). All the experiments were carried
out on macOS using a single 2.5 GHz Intel Core i7 processor. We foresee that substantial
improvements with regards to running time can be achieved by using high-performance
computers and/or implementing the algorithm in a faster programming architecture,
such as C/C++. We like to emphasize that BNB allows for straightforward paralleliza-
tion by processing the for-loop on line 8 in parallel. Hence, the performance indicators
that we present can safely be regarded as conservative.

Each time we run BNB, we randomly sample the parameters of the FML choice model
as follows. We sample the segments shares wc, for all c ∈ M, from the unit interval,
and normalize to ensure that ∑c∈M wc = 1. The parameters that concern the utility
assigned to the products, as defined in (2.1), are sampled as follows. For all c ∈ M
and j ∈ N, we randomly sample acj ∼ U(−4, 4), where U(`, u) denotes the continuous
uniform distribution over the interval [`, u], for `, u ∈ R. These values are in line with
the empirical work of Delahaye et al. (2017) and Li and Webster (2017b), and the simu-
lation framework of Rayfield et al. (2015). We randomly sample the price sensitivities
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Figure 2.3: The running time in seconds and the number of required iterations with
ε = 0.01. The dotted lines indicate the 95% confidence interval, based on 50 simulations
for each n ∈ {10, 20, . . . , 50} and m ∈ {2, 3, 4}.

bj ∼ U(−0.001,−0.01), for all j ∈ N. This corresponds with a broad range of price sen-
sitivities since, in the most extreme case, customers are ten times more price sensitive
for some products than for others.

2.4.2 Results

We set ε = 0.01, so that the obtained solution corresponds with expected revenue that
is, in the worst case, 99% of the maximum attainable expected revenue (Theorem 2.1).
To illustrate how the running time of BNB(ε) grows in the number of products n, we ran
BNB(ε) fifty times for each n ∈ {10, 20, . . . , 50} and m ∈ {2, 3, 4}, until the algorithm ter-
minated. In Figure 2.3, we illustrate the results of these simulations. This figure shows
the mean number of iterations and the mean CPU computation time (in seconds) re-
quired for BNB(ε) to converge, together with a 95% confidence interval for the mean.
We observe that the running time grows approximately linear in the number of prod-
ucts. From a practical point of view, BNB(ε) runs very fast on large-scale problems—the
average running time varies from approximately 0.2 seconds (for two segments and ten
products) to three minutes (for four segments and fifty products). It is worth emphasiz-
ing that we only use open-source software and consumer-purpose hardware to obtain
these results.

Figure 2.4 illustrates the growth in computation time as the number of segments m
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Figure 2.4: The running time in seconds and the number of required iterations, for m =
1, 2, 3, 4 and n = 10, 30, 50, with ε = 0.01. The dotted lines indicate the 95% confidence
interval, based on 50 simulations for each n ∈ {5, . . . , 50} and m ∈ {1, 2, 3, 4}.

increases from one to four, for n ∈ {10, 30, 50}. To construct Figure 2.4, we ran fifty
simulations for each m ∈ {1, 2, 3, 4} and n ∈ {10, 30, 50} until BNB(ε) terminated, with
ε = 0.01. Note the logarithmic scale of the y-axis of the top three panes in Figure 2.4.
Hence, the straight lines in the top three panes indicate that the running time grows
exponentially in the number of segments, which is in line with Theorem 2.2.

2.5 Alternative Approach

The approach of this chapter has been to reparameterize Π (the revenue function that
takes prices as input) to obtain π (a revenue function that takes the no-purchase prob-
abilities as input). In this section, we present yet another reparameterization (that also
takes the no-purchase probabilities as input).

Instead of parameterizing the no-purchase probabilities in the revenue function Π (see
Section 2.3), we parameterize the no-purchase probabilities in the first-order conditions
of Π. More precisely, we take the derivative of Π with respect to the prices and equate
them to zero to obtain the first-order conditions. Then, we parameterize the no-purchase
probabilities analogously to Section 2.3.2 and show that, when keeping the no-purchase
probabilities constant, a unique vector of prices exists that solves the resulting system
of non-linear equations. This leads to yet another revenue function that takes as input
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the no-purchase probabilities of the customer segments. We formalize this as follows.

The first-order conditions of Π (with respect to prices) can be written as(
pk −

1
bk

)
∑

c∈M
wcqc0(p)sck − ∑

j∈N
pje
−pjbj ∑

c∈M
wcqc0(p)2sckscj = 0, (2.23)

for all k ∈ N. We parameterize the no-purchase probabilities in (2.23) by defining, for
all k ∈ N, the function Fk : (0, 1)m ×Rn → R as follows

Fk(x, p) :=
(

pk −
1
bk

)
∑

c∈M
wcxcsck − ∑

j∈N
pje
−pjbj ∑

c∈M
wcx2

c sckscj,

for all x ∈ (0, 1)m and p ∈ Rn. Correspondingly, define the mapping F : (0, 1)m ×Rn →
Rn by F(x, p) := [F1(x, p), . . . , Fn(x, p)]> for all x ∈ (0, 1)m and p ∈ Rn. The following
proposition establishes that, for x ∈ (0, 1)m fixed, a unique p ∈ Rn

++ exists that solves
F(x, p) = 0.

Proposition 2.7. For all x ∈ (0, 1)m, there is a unique p ∈ Rn
++ that solves F(x, p) = 0.

Sketch of proof (detailed proof in Appendix 2.A.6). First, we show that, for x ∈ (0, 1)m, a
p ∈ Rn

++ exists that solves F(x, p) = 0 by relying on Brouwer’s fixed point theorem.
Then, for x ∈ (0, 1)m fixed, we show that F(x, ·) is injective by deriving that the Jacobian
of F is a so-called P-matrix and by relying on Gale and Nikaido (1965). This shows that
a unique p ∈ Rn

++ exists that solves F(x, p) = 0 for x ∈ (0, 1)m fixed.

Remark 2.3. Note that Proposition 2.7 does not establish that, for x, x′ ∈ (0, 1)m, x 6= x′,
and p, p′ ∈ Rn

++ such that F(x, p) = 0 and F(x′, p′) = 0, it holds that p 6= p′.

With slight abuse of notation, Proposition 2.7 allows us to define p : (0, 1)m → Rn
++

as the unique positive solution to F(x, p) = 0 for x ∈ (0, 1)m, i.e., p(·) is such that
F(x, p(x)) = 0 for all x ∈ (0, 1)m. Correspondingly, we define the revenue function
π′ : (0, 1)m → R++ by

π′(x) := Π(p(x)), for x ∈ (0, 1)m,

which leads us to the following corollary (which is the analogue of Equation (2.4)).

Corollary 2.2. It holds that maxx∈[
¯
x,x̄] π′(x) = maxp∈[

¯
p,p̄] Π(p).

Proof. Let p∗ be a maximizer of Π. By Proposition 2.1, p∗ corresponds to a stationary
point of Π, which implies that F(q0(p∗), p∗) = 0. By Proposition 2.7, π′(q0(p∗)) =
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Π(p∗). Since p∗ ∈ [
¯
p, p̄] (again, by Proposition 2.1), we have that q0(p∗) ∈ [

¯
x, x̄]. Hence,

maxx∈[
¯
x,x̄] π′(x) ≥ maxp∈[

¯
p,p̄] Π(p). This immediately implies the claimed equality,

since a strict inequality leads to a contradiction (i.e., then p∗ is not a maximizer).

Clearly, a (1− ε)-approximation to π′ has a one-to-one correspondence with a (1− ε)-
approximation to Π. Namely, for an x′ ∈ [

¯
x, x̄] and ε > 0 such that π′(x′) ≥ (1 −

ε)maxx∈[
¯
x,x̄] π′(x), it holds that Π(p(x′)) ≥ (1− ε)maxp∈[

¯
p,p̄] Π(p).

The apparent benefit of π′ over π is that π′(x) is well-defined for all x ∈ (0, 1)m, whereas
π(x) is only defined for x ∈ X (which is a non-convex set in general, cf. Figure 2.1).
Hence, by working with π′ (instead of π) would alleviate the burden of having to check
systematically, by means of the linear program LP(x, ·), if x ∈ X for x ∈ [

¯
x, x̄]. This

potentially saves substantial computational effort (recall from the proof of Theorem 2.2
that the computational complexity of bounding the revenue over a single hypercube is
dominated by the linear program that is used to check feasibility).

However, to construct a branch-and-bound algorithm (analogously to BNB) that uses π′

to obtain a (1− ε)-approximation for Π, we require a (local) Lipschitz constant of π′. It
has proven to be very difficult to obtain a Lipschitz constant that is sufficiently small to
make the algorithm practically useful. The most apparent approach is to use the implicit
function theorem to bound the norm of ∂π′(x)

∂x over [
¯
x, x̄] (or locally over B(x, r) for some

x ∈ [
¯
x, x̄] and r > 0). This would mean bounding the norm of the following expression:

∂π′(x)
∂x

=

(
∂p(x)

∂x

)>
· ∂Π(p)

∂p

∣∣∣∣
p=p(x)

=

(
∂F(x, p)

∂p

∣∣∣∣
p=p(x)

)−1

· ∂F(x, p)
∂x

∣∣∣∣
p=p(x)

· ∂Π(p)
∂p

∣∣∣∣
p=p(x)

. (2.24)

Given that p(x) in (2.24) is implicitly defined and given that there is no “easy” expres-
sion available for the matrix inverse in (2.24) makes it challenging—both globally and
locally—to obtain sufficiently sharp bounds on the norm of (2.24). That being said, sig-
nificant improvement in computation times are expected if a meaningful local Lipschitz
constant for π′ can be determined

For illustrative purposes, Figure 2.5 depicts the revenue function π′ for two segments
and twenty-five products. For this particular instance, parameters were sampled ac-
cording to the simulation scheme form Section 2.4. Observe that the figure is a two-
dimensional representation of the (originally) twenty-five-dimensional revenue func-
tion Π.
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Figure 2.5: Illustration of the revenue function π′ for m = 2 and n = 25. Parameters are
sampled according to Section 2.4.

Finally, the following proposition alleviates the (potential) problem of having to solve a
large system of non-linear equations to evaluate π′.

Proposition 2.8. Let x ∈ (0, 1)m and r := rank(S) and assume, without loss of generality, that
the first r columns of S are linearly independent. Then, the n-dimensional system of equations
F(x, p) = 0 is equivalent to the following r-dimensional system:


p1

p2
...

pr

 =


b−1

1
b−1

2
...

b−1
r

+ A−1
1 S>1 DS



p1e−p1b1

...
pre−prbr

p̃1(p1, . . . , pr)e− p̃1(p1,...,pr)br+1

...
p̃n−r(p1, . . . , pr)e− p̃n−r(p1,...,pr)bn


, (2.25)

where S1 ∈ Rm×r and S2 ∈ Rm×n−r are such that S = [S1, S2] and p̃ : Rr → Rn−r is defined
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by

p̃(p1, . . . , pr) :=


b−1

r+1
b−1

r+2
...

b−1
n

+ A−1
2 S>2 S1(S>1 S1)

−1 A1




p1

p2
...

pr

−


b−1
1

b−1
2
...

b−1
r


 , where

A1 := diag

(
∑

c∈M
wcxcsc1, . . . , ∑

c∈M
wcxcscr

)
,

A2 := diag

(
∑

c∈M
wcxcsc,r+1, . . . , ∑

c∈M
wcxcscn

)
, and D := diag

(
w1x2

1, . . . , wmx2
m

)
.

Sketch of proof (detailed proof in Appendix 2.A.6). Let x ∈ (0, 1)m. First, we show that p1(x),
. . ., pr(x) is a solution to (2.25). Then, we show that p1(x), . . ., pr(x), p̃1(p1(x), . . . , pr(x)),
. . ., p̃n−r(p1(x), . . . , pr(x)) is a solution to F(x, p) = 0. Since there exists a unique so-
lution to F(x, p) = 0 by Proposition 2.7, the solution p1(x), . . . , pr(x) to (2.25) is also
unique. Hence, there is a unique solution to (2.25) that corresponds with the unique
solution to F(x, p) = 0.

This proposition establishes that π′ can be evaluated by solving an r-dimensional sys-
tem of equations (instead of by solving the n-dimensional system F(x, p) = 0), where
r ≤ min(n, m) since S ∈ Rm×n. Given that the purpose of this paper is on pricing
under the FML choice model when m (the number of segments) is relatively low, this
potentially yields a substantial dimension reduction.

2.A Appendix: Proofs

2.A.1 Proofs of Section 2.3.2

Proof of Proposition 2.1

Let c1 > 0, and define

ā := max
c∈M,j∈N

acj and p∗k := b−1
k + exp (ā− 1) ∑

j∈N
b−1

j + c1,

for all k ∈ N, and P := ∏j∈N

[
0, p∗j

]
. The proof consists of three steps. We first show

that a global maximizer of Π exists in P . Then, we show that global maxima only
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occur in the interior of P . This implies that all global maxima are attained at stationary
points of Π on P . Finally, we show that each stationary point, hence each maximizer, is
contained in [

¯
p, p̄].

Step 1. A global maximizer of the revenue function Π exists, and all maximizers are in
P .

Proof of Step 1. We show that for any price vector p ∈ Rn, for which it holds that

p /∈ P ,

there exists a p′ ∈ P such that Π(p) < Π(p′). To this end, observe that for all j, k ∈ N,
c ∈ M, and p ∈ Rn,

∂qcj(p)
∂pk

= bkqck(p)
(

qcj(p)− 1{j=k}
)

,

and

∇kΠ(p) :=
∂Π(p)

∂pk

= ∑
c∈M

wc

qck(p) + pk
∂qck(p)

∂pk
+ ∑

j∈N\{k}
pj

∂qcj(p)
∂pk


= ∑

c∈M
wc

qck(p) + pkbkqck(p) (qck(p)− 1) + ∑
j∈N\{k}

pjbkqck(p)qcj(p)


= bk ∑

c∈M
wcqck(p)

b−1
k − pk(1− qck(p)) + ∑

j∈N\{k}
pjqcj(p)


= bk ∑

c∈M
wcqck(p)

{
b−1

k − pk + ∑
j∈N

pjqcj(p)

}

= bk ∑
c∈M

wcqck(p)

{
b−1

k − pk

(
1− ∑

j∈N
qcj(p)

)
+ ∑

j∈N
(pj − pk)qcj(p)

}
. (2.26)

From (2.26) it follows that negative prices are never optimal. To see this, let p ∈ Rn and
suppose, by contradiction, and without loss of generality, that pn < 0 and that pn ≤ pj,
for all j ∈ N. Then, from (2.26) it follows that

∇nΠ(p1, p2, . . . , pn) > 0.

Hence, there exists an ε > 0 such that Π(p1, p2, . . . , pn + ε) > Π(p1, p2, . . . , pn) and,
consequently, negative prices can never be optimal.
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We proceed by showing that for any p ∈ Rn
+ such that there is a k ∈ N for which

pk > p∗k , there is a p′ ∈ P such that Π(p′) > Π(p). Let p ∈ Rn
+ and suppose, without

loss of generality, that pn > p∗n. Observe that, for all c ∈ M and j ∈ N,

pjqcj(p) ≤ pj exp
(
acj − pjbj

)
≤ max

p̃j∈R
p̃j exp

(
acj − p̃jbj

)
= b−1

j exp
(
acj − 1

)
≤ b−1

j exp (ā− 1) . (2.27)

It follows that

∇nΠ(p) = bn ∑
c∈M

wcqcn(p)

{
b−1

n − pn + ∑
j∈N

pjqcj(p)

}
(a)
≤ bn ∑

c∈M
wcqcn(p)

{
b−1

n − pn + exp (ā− 1) ∑
j∈N

b−1
j

}
(b)
< bn ∑

c∈M
wcqcn(p)

{
b−1

n − p∗n + exp (ā− 1) ∑
j∈N

b−1
j

}
(c)
= −c1bn ∑

c∈M
wcqcn(p),

< 0 (2.28)

where (a) follows from (2.27), (b) follows by the hypothesis that pn > p∗n, and (c) follows
by definition of p∗n. Hence, ∇nΠ(p1, p2, . . . , p̃n) < 0 for all p̃n ∈ [p∗n, pn]. By symmetry,
for any p ∈ Rn

+ such that there is a k ∈ N, for which it holds that pk > p∗k , we have that

Π(p1, . . . , pk, . . . , pn) < Π(p1, . . . , p∗k , . . . , pn).

Hence, for any p′ /∈ P , there is a p ∈ P such that Π(p) > Π(p′). Since P is compact, and
Π is continuous and bounded on P , by the extreme value theorem a global maximizer
of Π exists on P . This completes the proof of Step 1.

Step 2. It holds that
max

p∈∏j∈N

[
0,p∗j

]Π(p) = max
p∈∏j∈N

(
0,p∗j

)Π(p).

Proof of Step 2. By contradiction, assume there is a p on the boundary of P that maxi-
mizes Π. This means that at least one of the following two cases hold:
Case (1). There is a k ∈ N such that pk = 0.
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Case (2). There is a k ∈ N such that pk = p∗k .
Assume that Case (1) holds. Let p ∈ P and, without loss of generality, let k = n. Then,
since pn = 0, and pj ≥ 0 for all j ∈ N, from (2.26) it follows that ∇nΠ(p) > 0. Hence,
there exists an ε > 0 such that pn + ε ∈ (0, p∗n), and Π(p1, p2, . . . , pn + ε) > Π(p). In
similar fashion, assume that Case (2) holds, that p ∈ P and, without loss of general-
ity, that pn = p∗n. Then, from (2.26) it follows that ∇nΠ(p) < 0, by similar arguments
used to obtain (2.28). Hence, there exists an ε > 0 such that pn − ε ∈ (0, p∗n), and
Π(p1, p2, . . . , pn − ε) > Π(p). This completes the proof of Step 2.

Step 3. Each maximizer of Π is contained in [
¯
p, p̄].

Proof of Step 3. By Step 1 and 2, a global maximizer of Π exists, and each global maxi-
mizer is in the interior of P . This implies that all maximizers are attained at stationary
points of Π. Let p be a maximizer of Π. From the first-order conditions, ∇Π(p) = 0, it
follows that, for all k ∈ N,

pk = b−1
k +

∑c∈M wcqck(p)∑j∈N pjqcj(p)

∑c∈M wcqck(p)
.

Since p ∈ P , it holds that p > 0 and, therefore, pk ≥ b−1
k =

¯
pk for all k ∈ N. In addition,

pk = b−1
k + ∑

c∈M

wcqck(p)
∑c′∈M wc′qc′k(p) ∑

j∈N
pjqcj(p)

≤ b−1
k + max

c∈M
max
p∈Rn

+
∑
j∈N

pjqcj(p)

= p̄k,

which completes the proof.

Remark 2.4. Based on the first-order conditions, Li and Webster (2017b) already ob-
served that non-negative stationary points must lie in [

¯
p, p̄]. However, Li and Webster

(2017b) do not show that such stationary points exist nor that a global maximizer exists.
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Proof of Lemma 2.1

Let x ∈ X. Then, for all p ∈ [
¯
p, p̄] such that q0(p) = x, it holds that,

Π(p) = ∑
c∈M

wcqc0(p) ∑
j∈N

pj exp
(
acj − pjbj

)
= ∑

c∈M
wcxc ∑

j∈N
scj pj exp

(
−pjbj

)
= ∑

j∈N
bj pj exp

(
−pjbj

)
k>j x

where we substitute xc for qc0(p) and scj for exp
(
acj
)

to obtain the second equality, and

substitute k j for b−1
j
[
w1s1j, . . . , wmsmj

]> for all j ∈ N to obtain the final equality. We
change decision variables from pj to zj(pj) = exp

(
−pjbj

)
for all j ∈ N to obtain the

objective function −∑j∈N zj log(zj)k>j x. After the change of variables, it follows that
the constraints xc = qc0(p) are equal to 1 + ∑j∈N scjzj =

1
xc

, for all c ∈ M. The problem
is concave since the function− log(y)y is concave on y ∈ (0, e−1) and zj ∈ (0, e−1), since
0 <

¯
zj < z̄j < e−1 and zj ∈ [

¯
zj, z̄j], for all j ∈ N. Clearly, the constraints are linear.

Proof of Proposition 2.2

Let x′ ∈ X, let z′ ∈ [
¯
z, z̄] be a maximizer of cnstr-rev(x′), and let ε > 0. Suppose that

π(x′) ≥ (1− ε)max
x∈X

π(x).

For p′ =
[
− log z′1

b1
, . . . ,− log z′n

bn

]>
, observe that

p′ ∈ [
¯
p, p̄],

since, for all j ∈ N, p′j = −
log z′j

bj
≤ − log

¯
zj

bj
= p̄j, and p′j = −

log z′j
bj
≥ − log z̄j

bj
=

¯
pj, given

that
¯
zj ≤ z′j ≤ z̄j, for all j ∈ N. It remains to show that Π(p′) ≥ (1− ε)maxp∈[

¯
p,p̄] Π(p).

Observe that, for all c ∈ M,

qc0(p′) =
1

1 + ∑j∈N scjz′j

= x′c, (2.29)
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where the first equality holds by definition of p′, and the second equality follows from
the fact that 1+∑j∈N scjz′j =

1
x′c

, by virtue of z′ being a solution to cnstr-rev(x′). Then,

Π(p′) = ∑
c∈M

wcqc0(p′) ∑
j∈N

p′j exp
(

acj − p′jbj

)
(a)
= ∑

j∈N
p′jbj exp

(
−p′jbj

)
k>j x′

(b)
= − ∑

j∈N
z′j log z′jk

>
j x′

(c)
= max

z∈[
¯
z,z̄]:

1+∑j∈N scjzj=
1
x′c

∑
j∈N

zj log zjk>j x′

(d)
= π(x′)
(e)
≥ (1− ε)max

x∈X
π(x)

( f )
= (1− ε) max

p∈[
¯
p,p̄]

Π(p).

To obtain (a), we rely on (2.29) to substitute bjk>j x′ for ∑c∈M wcqc0(p′)scj, for all j ∈ N
(recall that exp

(
acj
)
= scj and k j = b−1

j [w1s1j, . . . , wmsmj]
>). Then, to obtain (b), we

substitute −b−1
j log(z′j) for p′j, for all j ∈ N. Equality (c) holds since z′ is solution to

cnstr-rev(x′), and (d) holds by definition of π. Finally, (e) holds by hypothesis, and
(f) holds by Equation (2.4).

2.A.2 Proofs of Section 2.3.3

Proof of Proposition 2.3

By definition in (2.6), the dual equals

D(x, λ,
¯
ν, ν̄) = max

z∈Rn
++

L(z, x, λ,
¯
ν, ν̄),

where (λ,
¯
ν, ν̄) ∈ Rm ×Rn ×Rn, x ∈ X, and

L(z, x, λ,
¯
ν, ν̄) = − ∑

j∈N
zj log(zj)k>j x + λ> (Sz− µ(x))−

¯
ν>(z−

¯
z) + ν̄>(z− z̄).
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Observe that L is concave in z over R++, since the function −y log(y) is concave on
R++ and the linear part in the second term is clearly concave in z. Hence, it suffices to
solve the first-order conditions of L. To this end, observe that

∂L(z, x, λ,
¯
ν, ν̄)

∂zj
= −(1 + log(zj))k>j x + λ>sj − ¯

νj + ν̄j

for all j ∈ N. It follows that the first-order conditions

−(1 + log(zj))k>j x + λ>sj − ¯
νj + ν̄j = 0,

are solved by

z̃j(x, λ,
¯
ν, ν̄) = exp

(
λ>sj + ν̄j − ¯

νj

k>j x
− 1

)
for all j ∈ N. This means that the dual equals

D(x, λ,
¯
ν, ν̄) = max

z∈Rn
++

L(z, x, λ,
¯
ν, ν̄)

= L(z̃(x, λ,
¯
ν, ν̄), x, λ,

¯
ν, ν̄)

= − ∑
j∈N

z̃j(x, λ,
¯
ν, ν̄)

(
∑m

c=1 λcscj + ν̄j − ¯
νj

k>j x
− 1

)
k>j x

+
m

∑
c=1

λc ∑
j∈N

scj z̃j(x, λ,
¯
ν, ν̄)

− λ>µ(x) + ν̄>(z̃(x, λ,
¯
ν, ν̄)− z̄)−

¯
ν>(z̃(x, λ,

¯
ν, ν̄)−

¯
z)

= ∑
j∈N

z̃j(x, λ,
¯
ν, ν̄)k>j x− λ>µ(x) +

¯
ν>

¯
z− ν̄> z̄

where (λ,
¯
ν, ν̄) ∈ Rm ×Rn ×Rn and x ∈ X. The first equality follows by definition

in (2.6). The second equality follows from the observation that L is concave in z, and
that z̃ solves the first-order conditions. The third equality follows from substitution
of z̃, and the final equality follows after rearranging terms. Strong duality holds by
Slater’s condition (Boyd and Vandenberghe, 2004, p. 226), since the objective function
in cnstr-rev(x) is concave, and the constraints are affine.

It remains to show that, for x ∈ X, min(λ,
¯
ν,ν̄)∈Rm×Rn

+×Rn
+
D(x, λ,

¯
ν, ν̄) has a unique so-

lution. To this end, we show that D is strictly convex in (λ,
¯
ν, ν̄) over Rm ×Rn

+ ×Rn
+

for x ∈ X fixed. Let x ∈ X and let j ∈ N. Observe that z̃j(x, λ,
¯
ν, ν̄) is strictly convex in
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(λ,
¯
ν, ν̄), since it is the function composition of exp (·), which is strictly convex, and

λ>sj + ν̄j − ¯
νj

k>j x
− 1,

which is an affine function Rm+2 → R. Since k>j x > 0, it follows that z̃j(x, λ,
¯
ν, ν̄)k>j x is

strictly convex in (λ,
¯
ν, ν̄). This means thatD is the sum of strictly convex functions (the

summation in the first part of (2.7)) and convex functions (the linear functions in (2.7)),
which implies that D is strictly convex in (λ,

¯
ν, ν̄). This completes the proof.

2.A.3 Proofs of Section 2.3.4

Proof of Lemma 2.2

Recall that, for x ∈ (0, 1)m and (λ,
¯
ν, ν̄) ∈ Rm ×Rn ×Rn, ∇D(x, λ,

¯
ν, ν̄) denotes the

gradient of D with respect to the variable x, i.e., with respect to the first argument, eval-
uated at the point (x, λ,

¯
ν, ν̄). Correspondingly, for c ∈ M, we denote by∇cD(x, λ,

¯
ν, ν̄),

the cth element of ∇D(x, λ,
¯
ν, ν̄), i.e., the derivative of D with respect to xc.

We first derive an expression for∇cD. Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m,
and let (λ,

¯
ν, ν̄) ∈ Rm ×Rn ×Rn. Then,

∇cD(x, λ,
¯
ν, ν̄) = ∑

j∈N

(
∂k>j x

∂xc
z̃j(x, λ,

¯
ν, ν̄) + k>j x

∂z̃j(x, λ,
¯
ν, ν̄)

∂xc

)
+

λc

x2
c

= ∑
j∈N

(
wc

scj

bj
z̃j(x, λ,

¯
ν, ν̄)− wc

scj

bj
z̃j(x, λ,

¯
ν, ν̄)

λ>sj + ν̄j − ¯
νj

k>j x

)
+

λc

x2
c

=
λc

x2
c
− wc ∑

j∈N

scj

bj
z̃j(x, λ,

¯
ν, ν̄)

(
λ>sj + ν̄j − ¯

νj

k>j x
− 1

)

=
λc

x2
c
+ wc ∑

j∈N

scj

bj
φ(z̃j(x, λ,

¯
ν, ν̄)), (2.30)

where we recall that φ(y) = −y log(y), for y ∈ R++.

We bound the infinity norm of (2.30) from above as follows. Let x ∈ X and r > 0
such that B(x, r) ⊂ (0, 1)m, and recall that (λx,

¯
νx, ν̄x) denotes the solution to the dual
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problem (2.8). Then,

max
x̃∈B(x,r)

‖∇D(x̃, λx,
¯
νx, ν̄x)‖ = max

x̃∈B(x,r),c∈{1,...,m}

∣∣∣∣∣λx
c

x̃2
c
+ wc ∑

j∈N

scj

bj
φ(z̃j(x̃, λx,

¯
νx, ν̄x))

∣∣∣∣∣
= max

x̃∈B(x,r),c∈{1,...,m}
max

{
λx

c
x̃2

c
+ wc ∑

j∈N

scj

bj
φ(z̃j(x̃, λx,

¯
νx, ν̄x)),

−
(

λx
c

x̃2
c
+ wc ∑

j∈N

scj

bj
φ(z̃j(x̃, λx,

¯
νx, ν̄x))

)}
. (2.31)

Observe that, for all x̃ ∈ (0, 1)m, c ∈ M, and j ∈ N,

∂φ(z̃j(x̃, λx,
¯
νx, ν̄x))

∂x̃c
=

∂φ(z̃j(x̃, λx,
¯
νx, ν̄x))

∂z̃j(x̃, λx,
¯
νx, ν̄x)

∂z̃j(x̃, λx,
¯
νx, ν̄x)

∂x̃c

= (1 + log(z̃j(x̃, λx,
¯
νx, ν̄x)))︸ ︷︷ ︸

(a)

wc
scj

bj
z̃j(x̃, λx,

¯
νx, ν̄x)

(
(λx)>sj + ν̄x

j − ¯
νx

j

) (
k>j x̃

)−2

︸ ︷︷ ︸
(b)

.

(2.32)

For any maximizer z of cnstr-rev(x), it holds that z ∈ [
¯
z, z̄] by construction of cnstr-

rev(x). By strong duality (Proposition 2.3), we have that

z̃1(x, λx,
¯
νx, ν̄x), . . . , z̃n(x, λx,

¯
νx, ν̄x)

is a solution to cnstr-rev(x). Hence, for all j ∈ N,

z̃j(x, λx,
¯
νx, ν̄x) = exp

(
(λx)>sj + ν̄x

j − ¯
νx

j

k>j x
− 1

)
≤ z̄j ≤ exp (−1) ,

and, since k>j x > 0,

(λx)>sj + ν̄x
j − ¯

νx
j ≤ 0. (2.33)

By (2.33) and k>j x̃ > 0 for all x̃ ∈ (0, 1)m, it follows that

z̃j(x̃, λx,
¯
νx, ν̄x) = exp

(
(λx)>sj + ν̄x

j − ¯
νx

j

k>j x̃
− 1

)
≤ exp (−1) . (2.34)

It follows that both (a) and (b) in (2.32) are non-positive and, therefore, (2.32) is non-
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negative. Consequently, we have

max
x̃∈B(x,r)

φ(z̃j(x̃, λx,
¯
νx, ν̄x)) = φ(z̃j(x + r, λx,

¯
νx, ν̄x)), and

min
x̃∈B(x,r)

φ(z̃j(x̃, λx,
¯
νx, ν̄x)) = φ(z̃j(x− r, λx,

¯
νx, ν̄x)).

Applying these equalities to (2.31) and observing that

max
x̃∈B(x,r)

λx
c

x̃2
c
≤ λx

c
(xc − sgn(λx

c ) · r)2 , and

min
x̃∈B(x,r)

λx
c

x̃2
c
≤ λx

c
(xc + sgn(λx

c ) · r)2 ,

we obtain

max
x̃∈B(x,r)

‖∇D(x̃, λx,
¯
νx, ν̄x)‖ ≤ max

c∈{1,...,m}
max

{
λx

c
(xc − sgn(λx

c ) · r)2 + wc ∑
j∈N

scj

bj
φ(z̃j(x + r, λx,

¯
νx, ν̄x)),

−λx
c

(xc + sgn(λx
c ) · r)2 − wc ∑

j∈N

scj

bj
φ(z̃j(x− r, λx,

¯
νx, ν̄x))

}
=L(x, r).

This completes the proof.
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Proof of Proposition 2.4

Let x ∈ X and r > 0 such that B(x, r) ⊂ (0, 1)m. First, suppose L(x, r) ≤ K(x, r). Then,
it holds that

max
x̃∈B(x,r)∩X

π(x̃)
(a)
= max

x̃∈B(x,r)∩X
D
(
x̃, λx̃,

¯
νx̃, ν̄x̃)

(b)
≤ max

x̃∈B(x,r)∩X
D (x̃, λx,

¯
νx, ν̄x)

≤ max
x̃∈B(x,r)

D (x̃, λx,
¯
νx, ν̄x)

(c)
≤ D (x, λx,

¯
νx, ν̄x) + max

x̃∈B(x,r)
‖∇D (x̃, λx,

¯
νx, ν̄x)‖ · ‖x̃− x‖

(d)
≤ D (x, λx,

¯
νx, ν̄x) + L(x, r) · r

(e)
= π(x) + L(x, r) · r,

where (a) holds by strong duality (Proposition 2.3), (b) holds by weak duality, (c) holds
by Lipschitz continuity of D in x̃ and convexity of B(x, r), (d) holds by Lemma 2.2, and
(e) holds by strong duality. This implies that the claim holds if L(x, r) ≤ K(x, r).

Now, suppose K(x, r) ≤ L(x, r). Let x̃ ∈ B(x, r) ∩ X. First, we show that the arc ~x :
[0, 1]→ Rm, defined by

~x(t) :=
[

x1 x̃1

tx1 + (1− t)x̃1
, . . . ,

xm x̃m

txm + (1− t)x̃m

]>
, t ∈ [0, 1],

is completely contained in B(x, r) ∩ X (note that this arc connects x with x̃). Then, we
show that π(~x(t)) is differentiable with respect to t for t ∈ (0, 1) and bound the absolute
value of the derivative of π with respect to t over (0, 1). Finally, we use the mean-value
theorem to obtain the claimed upper bound.

We now show that ~x(t) ∈ B(x, r) ∩ X for all t ∈ [0, 1]. First, we show that ~x(t) ∈ X for
all t ∈ [0, 1]. Observe that

µ(~x(t)) = tµ(x̃) + (1− t)µ(x),

for t ∈ [0, 1]. This implies that, for all t ∈ [0, 1], there exists a z′ ∈ [
¯
z, z̄] such that

Sz′ = µ(~x(t)), namely z′ = tz̃ + (1− t)z where z, z̃ ∈ [
¯
z, z̄] are such that Sz = µ(x) and

Sz̃ = µ(x̃). Hence, for all t ∈ [0, 1], there exists a p′ ∈ [
¯
p, p̄] such that q0(p′) = ~x(t),
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namely p′ =
[
− log(z′1)b

−1
1 , . . . ,− log(z′n)b−1

n

]>
, which shows that ~x(t) ∈ X for all

t ∈ [0, 1]. It also holds that ~x(t) ∈ B(x, r) for all t ∈ [0, 1] since, for all c ∈ M, ~xc(0) = xc,
~xc(1) = x̃c, and ~xc(t) is strictly increasing (decreasing) in t if xc < x̃c (xc > x̃c). This
proves the claim that the arc ~x(t) for t ∈ [0, 1] is completely in B(x, r) ∩ X.

We proceed by showing that π(~x(t)) is differentiable with respect to t, for all t ∈ (0, 1),
and by bounding the absolute value of this derivative. Note that ~x(t) is differentiable
with respect to t, for all t ∈ (0, 1), and therefore differentiability of π(~x(t)) with respect
to t would follow by showing that π is differentiable in x. However, it may happen that
~x(t) lies on the boundary of the (closed) set X, in which case the derivative of π(x) is
not defined. To alleviate this, we extend the domain of π to (0, 1)m, as follows: for x ∈
(0, 1)m, let πe(x) := min(λ,

¯
ν,ν̄)∈Rm×Rn

+×Rn
+

∑j∈N z̃j(x, λ,
¯
ν, ν̄)k>j x− λ>µ(x) +

¯
ν>

¯
z− ν̄> z̄,

where z̃j(x, λ,
¯
ν, ν̄) is as in (2.5), defined for all (x, λ,

¯
ν, ν̄) ∈ (0, 1)m ×Rm ×Rn ×Rn.

Similarly as in the proof of Proposition 2.3, one can show that z̃j(x, λ,
¯
ν, ν̄) is strictly

convex in (λ,
¯
ν, ν̄), for each x ∈ (0, 1)m. As a result, πe(x) exists and is well-defined,

for each x ∈ (0, 1)m. In addition, πe is a genuine extension of π, since Proposition 2.3
implies π(x) = πe(x) for all x ∈ X.

By the envelope theorem, πe(x) is differentiable with respect to x, for all x ∈ (0, 1)m. It
follows that πe(~x(t)) is differentiable with respect to t, for all t ∈ (0, 1). Since ~x(t) ∈ X
for all t ∈ (0, 1), it follows that π(~x(t)) is differentiable with respect to t, for all t ∈ (0, 1).

We proceed by constructing an upper bound on the absolute value of this derivative.
Recall that

¯
σ is the smallest singular value of S and define h : (0, 1)m × (0, 1)×R → R

by

h(x, r, ε) :=
rn1/2|ε|

¯
σ minc∈M xc(xc − r)

.

Let t′ ∈ (0, 1) and ε ∈ R such that t′ − ε > 0, t′ + ε < 1 and h(x, r, ε) < minj∈N ¯
zj (such

an ε exists since
¯
z is bounded away from zero). Since

∣∣∣ ∂~xc(t)
∂t

∣∣∣ = xc x̃c |x̃c−xc |
(t(xc−x̃c)+x̃c)2 ≤ r xc∨x̃c

xc∧x̃c

for all t ∈ (0, 1) and c ∈ M, it follows by the mean value theorem that

|~xc(t′ + ε)−~xc(t′)| ≤ |ε|r
xc ∨ x̃c

xc ∧ x̃c
≤ |ε|r xc + r

xc − r
. (2.35)
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Define Z(x̆) := {z ∈ Rn : Sz = µ(x̆)} for all x̆ ∈ X. By (2.35), it follows that

π(~x(t + ε)) = max
z∈Z(~x(t′+ε))∩[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j ~x(t

′ + ε)

≤ max
z∈Z(~x(t′+ε))∩[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j ~x(t

′) + |ε|r ∑
j∈N

b−1
j ∑

c∈M
wcscj

xc + r
xc − r

.

≤ max
z∈Z(~x(t′+ε))∩[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j ~x(t

′)︸ ︷︷ ︸
(∗)

+|ε|rns̄
¯
b−1 max

c∈M

xc + r
xc − r

. (2.36)

We claim that, for each z ∈ Z(~x(t′ + ε)) ∩ [
¯
z, z̄], there exists a

z′ ∈ Z(~x(t′)) ∩ [
¯
z− h(x, r, ε), z̄ + h(x, r, ε)]

such that

‖z− z′‖ ≤ h(x, r, ε). (2.37)

To see this, suppose z ∈ Z(~x(t′ + ε)) ∩ [
¯
z, z̄]. Let S+ be the Moore-Penrose inverse of S

(Moore, 1920, Penrose, 1955) and let u ∈ Rn such that z = S+µ(~x(t′+ ε))+ (In − S+S)u.
Such a u ∈ Rn exists since, for all x̆ ∈ X,

Z(x̆) = {S+µ(x̆) + (In − S+S)u : u ∈ Rn}, (2.38)

see James (1978). In addition, let z′ := S+µ(~x(t′)) + (In − S+S)u. Using that ‖S+‖ ≤
n1/2‖S+‖2 = n1/2

¯
σ−1, we find that

‖z− z′‖ = ‖S+(µ(~x(t′ + ε))− µ(~x(t′)))‖
≤ n1/2

¯
σ−1‖µ(~x(t′ + ε))− µ(~x(t′))‖

= n1/2
¯
σ−1 max

c∈M

∣∣∣∣ 1
~xc(t′ + ε)

− 1
~xc(t′)

∣∣∣∣
≤ |ε|n1/2

¯
σ−1 max

c∈M

∣∣∣∣ 1
xc
− 1

x̃c

∣∣∣∣
≤ h(x, r, ε),

which shows that inequality (2.37) holds for z′. Furthermore, z′ ∈ Z(~x(t)) by definition
of z′ and given the identity in Equation (2.38), and

z′ ∈ [
¯
z− h(x, r, ε), z̄ + h(x, r, ε)],
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since z ∈ [
¯
z, z̄] and given (2.37). This proves the claim that for each z ∈ Z(~x(t′ + ε)) ∩

[
¯
z, z̄], there exists a z′ ∈ Z(~x(t′)) ∩ [

¯
z − h(x, r, ε), z̄ + h(x, r, ε)] such that (2.37) holds.

Using this result, we find that

(∗) ≤ max
z∈Z(~x(t′))∩[

¯
z−h(x,r,ε),z̄+h(x,r,ε)]

− ∑
j∈N

zj log(zj)k>j ~x(t
′)

≤ max
z∈Z(~x(t′))∩[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j ~x(t

′) +

h(x, r, ε) max
z∈Z(~x(t′))∩[

¯
z−h(x,r,ε),z̄+h(x,r,ε)]

∥∥∥∥∥∂ ∑j∈N zj log(zj)k>j ~x(t
′)

∂z

∥∥∥∥∥
≤ π(~x(t′)) + h(x, r, ε)max

j∈N

(
−
[
1 + log(

¯
zj − h(x, r, ε))

]
k>j ~x(t

′)
)

. (2.39)

In a similar fashion, we can derive

π(~x(t + ε)) = max
z∈Z(~x(t′+ε))∩[

¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j ~x(t

′ + ε)

(a)
≥ max

z∈Z(~x(t′+ε))∩[
¯
z,z̄]
− ∑

j∈N
zj log(zj)k>j ~x(t

′)

− |ε|rns̄
¯
b−1 max

c∈M

xc + r
xc − r

(b)
≥ max

z∈Z(~x(t′))∩[
¯
z+h(x,r,ε),z̄−h(x,r,ε)]

− ∑
j∈N

zj log(zj)k>j ~x(t
′)

− |ε|rns̄
¯
b−1 max

c∈M

xc + r
xc − r

(c)
≥ π(~x(t))− h(x, r, ε)max

j∈N

(
−
[
1 + log(

¯
zj − h(x, r, ε))

]
k>j ~x(t

′)
)

− |ε|rns̄
¯
b−1 max

c∈M

xc + r
xc − r

, (2.40)

where (a) follows by (2.35), (b) follows by observing that for each z ∈ Z(~x(t′)) ∩ [
¯
z +

h(x, r, ε), z̄− h(x, r, ε)], there exists a z′ ∈ Z(~x(t′ + ε)) ∩ [
¯
z, z̄] such that (2.37) holds, and

(c) follows analogously to (2.39). Combining (2.36), (2.39), and (2.40), we conclude that,
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for each t′ ∈ (0, 1), the derivative of π(~x(t)) in t′ satisfies∣∣∣∣∂π(~x(t′))
∂t

∣∣∣∣ = ∣∣∣∣limε→0

π(~x(t′ + ε))− π(~x(t′))
ε

∣∣∣∣
≤ rns̄

¯
b−1 max

c∈M

xc + r
xc − r

+ lim
ε→0

h(x, r, ε)maxj∈N

(
−
[
1 + log(

¯
zj − h(x, r, ε))

]
k>j ~x(t

′)
)

ε

= r

{
ns̄

¯
b−1 max

c∈M

xc + r
xc − r

+
n1/2 maxj∈N

(
−
[
1 + log(

¯
zj)
]

k>j ~x(t
′)
)

¯
σ minc∈M xc(xc − r)

}
. (2.41)

It holds that

max
j∈N

(
−
[
1 + log(

¯
zj)
]

k>j ~x(t
′)
)
= max

j∈N
( p̄jbj − 1)b−1

j ∑
c∈M

wcscj~xc(t′)

≤ s̄
¯
b−1 max

c∈M
max
p∈Rn ∑

i∈N
piqci(p). (2.42)

By Theorem 2 in Li and Huh (2011), for each c ∈ M, it follows that maxp∈Rn piqci(p) =
Π̃c, where Π̃c is the unique solution to the univariate fixed-point equation

Π̃c = ∑
j∈N

b−1
j scje

−(bjΠ̃c+1).

By implicit differentiation it follows that Π̃c is strictly increasing in scj and strictly de-
creasing in bj for all c ∈ M and j ∈ N. Using this observation, it can be derived that, for
each c ∈ M,

max
p∈Rn

piqci(p) ≤
¯
b−1W

(
ns̄e−1

)
, (2.43)

where
¯
b−1W

(
ns̄e−1) is the solution to Π̃c = n

¯
b−1 s̄e−(b̄Π̃c+1), and W is the Lambert

function (i.e., the inverse of yey), which is uniquely defined here since ns̄e−1 > 0. By
(2.42) and (2.43) it follows that Equation (2.41) can be bounded from above by

rns̄
¯
b−1

(
max
c∈M

xc + r
xc − r

+
n−1/2

¯
b−1W (ns̄)

¯
σ minc∈M xc(xc − r)

)
= rK(x, r), (2.44)

where we used that W(ns̄e−1) < W(ns̄). This shows that π(~x(t)) is differentiable with
respect to t, for all t ∈ (0, 1), and that the absolute value of the derivative is bounded by
the expression in Equation (2.44). By the mean-value theorem, it follows that π(~x(1)) ≤
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π(~x(0)) + rK(x, r), which translates to π(x̃) ≤ π(x) + rK(x, r). This proves the claim
for K(x, r) ≤ L(x, r), since x̃ ∈ B(x, r) ∩ X was chosen arbitrarily.

2.A.4 Proofs of Section 2.3.5

Proof of Proposition 2.5

We prove that for x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m, it holds that
B(x, r) ∩ X 6= ∅ if and only if LP(x, r) is feasible. Let [·]+ and [·]− denote operators
that return the element-wise positive and negative parts, respectively, of vectors, i.e.,
[v]+ = [max(0, v1), . . . , max(0, vn)]> and [v]− = [−min(0, v1), . . . ,−min(0, vn)]> for
v ∈ Rn.

(⇒) Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m. Suppose B(x, r) ∩ X 6= ∅.
Let x′ ∈ B(x, r) ∩ X and let z′ ∈ [

¯
z, z̄] such that Sz′ = µ(x′). Set the decision variables

of LP(x, r) to z = z′, δ+ = [µ(x)− µ(x′)]+, δ− = [µ(x)− µ(x′)]−, and γ = ‖δ+ + δ−‖.
Then, the constraints (2.14)-(2.18) of LP(x, r) are all satisfied:

1. Constraint (2.14): For all c ∈ M,

∑
j∈N

scjz′j + δ+c − δ−c = µc(x′) + [µc(x)− µc(x′)]+ − [µc(x)− µc(x′)]−

= µc(x′) + µc(x)− µc(x′)

=
1− xc

xc
.

2. Constraint (2.15): γ = ‖δ+ + δ−‖ = maxc∈M |δ+c + δ−c | ≥ δ+c + δ−c for all c ∈ M.

3. Constaint (2.16): δ+c =
[

1
xc
− 1

x′c

]+
≤ 1

xc
− 1

xc+r = µc(x)− µc(x + r).

4. Constraint (2.17): δ−c =
[

1
xc
− 1

x′c

]−
≤ 1

xc−r − 1
xc

= µc(x− r)− µc(x).

5. Constraint (2.18) is satisfied by definition of z′.

Hence, LP(x, r) is feasible.

(⇐) Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m. Suppose LP(x, r) is feasible,
and let (γ, z, δ+, δ−) be a solution to LP(x, r). We show that

xδ :=

[
x1

1 + x1 ·
(
δ−1 − δ+1

) , . . . ,
xm

1 + xm ·
(
δ−m − δ+m

)]> ∈ B(x, r) ∩ X,
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which then implies the claim, namely that B(x, r) ∩ X 6= ∅. It follows by construction
of the constraints (2.16) and (2.17) in LP(x, r) that

µ(x)− δ+ + δ− ∈ [µ(x + r), µ(x− r)].

Since for each c ∈ M it holds that µc(x) = 1−xc
xc

is monotonically decreasing in xc on
R++, it follows that

{
µ(x′) : x′ ∈ B(x, r)

}
= [µ(x + r), µ(x− r)],

and, hence, µ−1(µ(x) − δ+ − δ−) ∈ B(x, r). Since the inverse of µc equals µ−1
c (u) =

1
1+uc

, we have that

µ−1 (µ(x)− δ+ + δ−
)
=


1

1+ 1−x1
x1
−δ+1 +δ−1
...
1

1+ 1−xm
xm −δ+m+δ−m

 =


x1

1+x1·(δ−1 −δ+1 )
...

xm
1+xm ·(δ−m−δ+m)

 = xδ. (2.45)

Hence, it follows that xδ ∈ B(x, r).

We now show that xδ is also in X. Since (γ, z, δ+, δ−) is a solution to LP(x, r), it holds
that Sz + δ+ − δ− = µ(x) and, hence, we have that

Sz = µ(x)− δ+ + δ−.

Observe that, by (2.45), µ(xδ) = µ(x)− δ+ + δ−. Hence, there is a z′ ∈ [
¯
z, z̄], namely

z′ = z, that solves Sz′ = µ(xδ), which implies that xδ ∈ X.

Proof of Corollary 2.1

Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m, and suppose that B(x, r) ∩ X 6= ∅.
Let (γ, z, δ+, δ−) be a solution to LP(x, r). Observe that such a solution exists since, by
Proposition 2.5, B(x, r) ∩ X 6= ∅ implies that LP(x, r) is feasible. Then,

χ(x, δ+, δ−) ∈ B(x, r) ∩ X

is an immediate consequence of the proof of Proposition 2.5, where we show that if
LP(x, r) is feasible, then χ(x, δ+, δ−) ∈ B(x, r) ∩ X.

We now show that χ(x, δ+, δ−) = x if x ∈ X. Let x ∈ X and r > 0 such that



50 Chapter 2

B(x, r) ⊂ (0, 1)m. Observe that x ∈ X implies there is a z ∈ [
¯
z, z̄] such that Sz = µ(x),

since

X =
{

q0(p) : p ∈ [
¯
p, p̄]

}
=
{

x ∈ (0, 1)m : ∃p ∈ [
¯
p, p̄] such that q0(p) = x

}
=

{
x ∈ (0, 1)m : ∃p ∈ [

¯
p, p̄] such that ∑

j∈N
scj exp

(
−pjbj

)
=

1− xc

xc
, ∀c ∈ M

}

=

{
x ∈ (0, 1)m : ∃z ∈ [

¯
z, z̄] such that ∑

j∈N
scjzj = µc(x), ∀c ∈ M

}
= {x ∈ (0, 1)m : ∃z ∈ [

¯
z, z̄] such that Sz = µ(x)}

Hence, for each solution to LP(x, r) it holds that (γ, z, δ+, δ−) = (0, z, 0, 0), where z ∈
[
¯
z, z̄] such that Sz = µ(x). This implies that χ(x, δ+, δ−) = χ(x, 0, 0) = x.

Proof of Proposition 2.6

Let x ∈ (0, 1)m and r > 0 such that B(x, r) ⊂ (0, 1)m and B(x, r) ∩ X 6= ∅. Let
(γ, z, δ+, δ−) be a solution to LP(x, r) (by Proposition 2.5 a solution exists). The claim is
that

min
x′∈B(x,r)∩X

‖µ(x)− µ(x′)‖ = ‖µ(x)− µ(χ(x, δ+, δ−))‖.

First of all, from Corollary 2.1 it follows that χ(x, δ+, δ−) ∈ B(x, r)∩ X. Thus, it remains
to show that there does not exist an x′ ∈ B(x, r) ∩ X such that x′ 6= χ(x, δ+, δ−) and
‖µ(x)− µ(x′)‖ < ‖µ(x)− µ(χ(x, δ+, δ−))‖. Observe that the constraint γ ≥ δ+c + δ−c
for all c ∈ M in LP(x, r) implies that

γ = ‖δ+ + δ−‖, (2.46)

since ‖δ+ + δ−‖ = maxc∈M δ+c + δ−c and—by virtue of γ being a minimizer of LP(x, r)—
there is at least one c ∈ M such that the inequality constraint γ ≥ δ+c + δ−c is tight. In
addition, it holds that

‖µ(χ(x, δ+, δ−))− µ(x)‖ (a)
= ‖δ+ − δ−‖
(b)
= ‖δ+ + δ−‖
(c)
= γ.
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Equality (a) follows from the observation that χ(x, δ+, δ−) = µ−1 (µ(x)− δ+ + δ−).
Equality (b) holds since δ+c · δ−c = 0 for all c ∈ M such that γ = δ+c + δ−c . To see this, let
c ∈ M such that γ = δ+c + δ−c . Suppose that both δ+c >0 and δ−c > 0 and, without loss of
generality, suppose that δ+c > δ−c . Then, setting δ+c to δ+c − δ−c and δ−c to 0 would yield
an improved solution contradicting that γ is a minimizer of LP(x, r). Finally, (c) follows
from (2.46). Hence, LP(x, r) minimizes ‖µ(χ(x, δ+, δ−))− µ(x)‖.

Suppose, by contradiction, that there exists an x′ ∈ B(x, r) ∩ X such that x′ 6= χ(x, δ+, δ−)
and ‖µ(x′) − µ(x)‖ < γ. Then, by setting δ+ = [µ(x) − µ(x′)]+ and δ− = [µ(x) −
µ(x′)]−, we obtain a solution γ = ‖δ+ + δ−‖ that is strictly smaller than γ, contradict-
ing that γ is a minimizer.

2.A.5 Proofs of Section 2.3.6

Proof of Theorem 2.1

Let ε > 0 and let k = 1, 2, 3, . . . index the iterations of BNB(ε), where a new iteration
starts each time the algorithm passes the while clause on line 5. Let

¯
π(k), π̄(k), r(k), X (k)

1 ,
and X (k)

2 be the value of
¯
π, π̄, r, X1, and X2, respectively, at the beginning of the kth

iteration, for all k ∈N. For example, r(1) = 1
2 maxc∈M(x̄c − ¯

xc).

We first show that BNB(ε) terminates in a finite number of steps. By line 5 of BNB(ε), it
suffices to show that there is a k′ ∈N such that

(1− ε)π̄(k′) ≤
¯
π(k′). (2.47)

Let k0 := 1 + dlog2 (1 + ns̄)e. Let k ∈ N, k ≥ k0. With slight abuse of notation, for
all x ∈ X (k)

1 such that B(x, r(k)) ∩ X 6= ∅, let χ(x) and r(x) be the input to xδ and
rδ, respectively, on line 10 and 11 of BNB(ε). By construction of k0, it holds that, for
each x ∈ X (k)

1 such that B(x, r(k)) ∩ X 6= ∅, the if-statement on line 13 is satisfied, i.e.,
B(χ(x), r(x)) ⊂ (0, 1)m. To see this, first note that χ(x) ∈ X for all x ∈ X (k)

1 such that
B(x, r(k)) ∩ X 6= ∅, since χ(x) ∈ B(x, r(k)) ∩ X by Corollary 2.1. Furthermore, it holds
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that r(x) < χc(x) for all c ∈ M and x ∈ X (k)
1 such that B(x, r(k)) ∩ X 6= ∅, since

r(x) = r(k) + ‖x− χ(x)‖
(a)
≤ 2r(k)

≤ 2r(k0)

(b)
=

1
2k0−1 max

c∈M
(x̄c − ¯

xc)

≤ 1
1 + ns̄

(c)
≤ min

c∈M ¯
xc. (2.48)

Here, (a) holds since χ(x) ∈ B(x, r(k)) by Corollary 2.1, (b) follows by using the identity
r(k) = 1

2k maxc∈M(x̄c − ¯
xc) for k ∈ N, and (c) by observing that

¯
xc = qc0(

¯
p) ≥ (1 +

ns̄)−1. This shows that the if-statement on line 13 is satisfied for each x ∈ X (k)
1 such that

B(x, r(k)) ∩ X 6= ∅. It then follows by line 15 of BNB(ε) that

π̄(k+1) = max
x∈X (k)

1 : B(x,r(k))∩X 6=∅
πu (χ(x), r(x)) . (2.49)

We proceed by deriving an upper bound for (2.49). By definition of πu, cf. (2.12), the
right-hand side of (2.49) is equal to

max
x∈X (k)

1 : B(x,r(k))∩X 6=∅
{π(χ(x)) + r(x) · (L(χ(x), r(x)) ∧ K(χ(x), r(x)))} . (2.50)

It follows that

π̄(k+1) ≤ max
x∈X (k)

1 : B(x,r(k))∩X 6=∅

{
π(χ(x)) + 2r(k)K(χ(x), r(x))

}
≤

¯
π(k+1) + 2r(k) max

x∈X (k)
1 : B(x,r(k))∩X 6=∅

K(χ(x), r(x)), (2.51)

by construction of
¯
π(k+1) on line 12, and where we used r(x) ≤ 2r(k) for all x ∈ X (k)

1
such that B(x, r(k)) ∩ X 6= ∅, cf. (2.48). Let

K′ := ns̄
¯
b−1

(
1 +

4
minc∈M ¯

xc
+

n−1/2
¯
b−1W (ns̄)

¯
σ minc∈M ¯

x2
c

)
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and observe that

max
x∈X (k)

1 : B(x,r(k))∩X 6=∅
K(χ(x), r(x)) ≤ ns̄

¯
b−1 max

x∈X (k)
1 : B(x,r(k))∩X 6=∅

{
max
c∈M

χ(x)c + 2r(k)

χ(x)c − 2r(k)
+

n−1/2
¯
b−1W (ns̄)

¯
σ minc∈M χ(x)c(χ(x)c − 2r(k))

}
≤ K′. (2.52)

Let

k′ :=
⌈

2 + log2
K′

ε
¯
π(1)

⌉
∨ k0.

Then, by (2.51) and (2.52), we find that

(1− ε)π̄(k′) ≤ (1− ε)
(

¯
π(k′) + 2K′r(k

′−1)
)

≤
¯
π(k′) − ε

¯
π(k′) +

K′

2k′−2 max
c∈M

(x̄c − ¯
xc)

≤
¯
π(k′) − ε

¯
π(k′) + ε

¯
π(1)

≤
¯
π(k′),

using the identity r(k) = 2−k maxc∈M(x̄c − ¯
xc) for k ∈ N, and since

¯
π(k′) ≥

¯
π(1). This

shows that (2.47) holds for k′ and, hence, that BNB(ε) terminates in finite steps.

We now show that BNB(ε) delivers a p′ ∈ Rn such that Π(p′) ≥ (1− ε)maxp∈Rn Π(p).
Let k ∈ N be the number of completed iterations before the algorithm terminates. We
claim that the set

⋃
x∈X (k)

1

B
(

x, r(k)
)

(2.53)

contains all maximizers of π over X. By contradiction, suppose there is a maximizer
x′ of π in X that is not in (2.53). Then, for some κ ∈ {1, 2, . . . , k}, there is an x̃ ∈ X (κ)

1
such that x′ ∈ B(x̃, r(κ)), but x̃ /∈ X (κ+1)

2 (here, we write X (k+1)
2 for the final value of

X2). This implies that either B
(

x̃, r(κ)
)
∩ X = ∅ (line 8) or B

(
x̃, r(κ)

)
∩ X 6= ∅ and

πu(xδ, rδ) <
¯
π on line 14. The former contradicts that x′ ∈ X and, by Proposition 2.4,

the latter contradicts optimality of x′. This proves that (2.53) contains all maximizers of
π over X.

Writing
¯
π(k+1) and π̄(k+1) for the value of

¯
π and π̄, respectively, if the algorithm termi-
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nates, it follows that

π(x?)
(a)
=

¯
π(k+1)

(b)
≥ (1− ε)π̄(k+1)

(c)
≥ (1− ε) max

x∈⋃
x′∈X (k)

1
B(x′ ,r(k))∩X

π(x)

(d)
= (1− ε)max

x∈X
π(x),

where (a) holds by construction of x? on line 12 of BNB(ε), (b) holds by the fact that
BNB(ε) terminated after k iterations, and (c) and (d) follow by the fact that (2.53) contains
all maximizers of π over X. Let z be a solution to cnstr-rev(x?), and let

p′ :=
[
− log z′1

b1
, . . . ,− log z′n

bn

]>
.

Then, Π(p′) ≥ (1− ε)maxp∈Rn Π(p) by Proposition 2.2, which completes the proof.

Proof of Theorem 2.2

Let ε > 0. In the proof of Theorem 2.1, we show that the number of required iterations
before BNB(ε) converges is at most

k′ :=
⌈

2 + log2
K′

ε
¯
π(1)

⌉
∨ k0,

where k0 := 1 + dlog2 (1 + ns̄)e and

K′ := ns̄
¯
b−1

(
1 +

4
minc∈M ¯

xc
+

n−1/2
¯
b−1W (ns̄)

¯
σ minc∈M ¯

x2
c

)
.

Hence, the total number of hypercubes evaluated by BNB(ε) is at most 2k′m. We have
that

¯
π(1) = Π(

¯
p) = e−1 ∑

c∈M
wc ∑

j∈N
scjb−1

j ≥ e−1 min
c∈M,j∈N

scjb−1
j ,

which shows that
¯
π(1) is bounded away from zero by a constant independent of m and

n. In addition, W(ns̄) is O(n1/2) and (minc∈M ¯
xc)−1 = 1 + e−1 maxc∈M ∑j∈N scj ≤ 1 +
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ns̄. It follows that K′ is O(n3) and, thus, that the total number of hypercubes evaluated
by BNB(ε) is O(ε−m).

The time complexity of evaluating a single hypercube, i.e., a single iteration over lines 9-
18 of BNB(ε), is O(m5.5n5.5). To see this, observe that, for each hypercube, we solve the
linear program LP from Section 2.3.5 to check feasibility and we minimize a convex
function to evaluate π (on line 12) (we neglect the other arithmetic operations, since
these are of lower time complexity). By relying on interior-point methods, the linear
program is solved in O((2m + n + 1)3.5 I2) time, where 2m + n + 1 is the number of
decision variables and I is the input size of LP in bits (Karmarkar, 1984). Since the input
size in bits of LP is O(mn), solving LP takes O(m5.5n5.5) time. To evaluate π, we solve
the convex minimization problem in (2.8), which takes quadratic time in the number of
variables when using (quasi)-Newton methods (Nocedal and Wright, 1999, p.198), i.e.,
its time complexity is O(n2 + m2). Hence, the time complexity of evaluating a single
hypercube is O(m5.5n5.5).

It follows that the time complexity of BNB(ε) is O
(
ε−mn5.5+3m).

2.A.6 Proofs of Section 2.5

Proof of Proposition 2.7

Let x ∈ (0, 1)m. We show there is a unique p ∈ Rn
++ that solves F(x, p) = 0. Let

P := ∏
k∈N

b−1
k

[
1, 1 +

∑c∈M wcx2
c sck ∑j∈N scj

e ∑c∈M wcxcsck

]
⊂ Rn

++,

and recall that

Fk(x, p) =
(

pk − b−1
k

)
∑

c∈M
wcxcsck − ∑

j∈N
pje
−pjbj ∑

c∈M
wcx2

c sckscj,

for all k ∈ N.

First, we show that any p ∈ Rn
++ that solves F(x, p) = 0 is in P and that such a p ∈ P

exists. Then, we show that F is injective in its second argument over P . This proves
there is a unique p ∈ P that solves F(x, p) = 0.

Define the mapping H : Rn
++ → Rn by H(p) := F(x, p) + p and observe that the system

F(x, p) = 0 is equivalent to the fixed-point problem H(p) = p. Given the fact that, for
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all k ∈ N,

Hk(p) = b−1
k +

∑j∈N pje
−pjbj ∑c∈M wcx2

c sckscj

∑c∈M wcxcsck
, (2.54)

and that maxpk∈R pke−pkbk = b−1
k e−1, it holds that any p ∈ Rn

++ that solves H(p) = p
(and hence F(x, p) = 0) must be inP . By Brouwer’s fixed point theorem, such a solution
exists, since H maps P to itself (and P is compact and convex).

We now show that F is injective over P , i.e., F(x, p) 6= F(x, p′) for all p, p′ ∈ P such that
p 6= p′. To this end, we put the following definitions and theorem in place.

Definition 2.1 (principal sub-matrix). For an n× n matrix A and K ⊆ {1, . . . , n}, K 6= ∅,
the principal sub-matrix A[K] is the sub-matrix of A when we only keep the rows and
columns with indices in K.

Definition 2.2 (principal minor). For an n× n matrix A and K ⊆ {1, . . . , n}, K 6= ∅, the
determinant of A[K] is a principal minor of A.

Definition 2.3 (P-matrix). A square matrix is a P-matrix if all its principal minors are
positive.

Theorem 2.3 (Gale-Nikaido, 1965, Theorem 4). Let F : Ω→ Rn be a differentiable mapping,
where Ω is a closed rectangular region in Rn. Then, F is injective if the Jacobian of F is a
P-matrix everywhere in Ω.

We now show that the Jacobian of F is a P-matrix everywhere in P . Let p′ ∈ P and
denote by J ∈ Rn×n the Jacobian of F evaluated at p′, i.e., Jij =

∂Fi(x,p′)
∂pj

for all i, j ∈ N.
Observe that

Jij = 1{i=j} ∑
c∈M

wcxcsci + (p′jbj − 1)e−p′jbj ∑
c∈M

wcx2
c sciscj,

for all i, j ∈ N. Let K ⊆ {1, . . . , n}, K 6= ∅, with cardinality k := |K|, and let `1, . . . , `k

index the elements of K. Then, it holds that

J[K] = A1 + UU>A2, (2.55)
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where U ∈ Rk×m
++ with Uic =

√
wcxcsci for all i ∈ K and c ∈ M,

A := diag

(
∑

c∈M
wcxcsc`1 , . . . , ∑

c∈M
wcxcsc`k

)
, and

B := diag
(
(p′`1

b`1 − 1)e−p′`1
b`1 , . . . , (p′`k

b`k
− 1)e

−p′`k
b`k

)
.

Taking the determinant of Equation (2.55) and applying the matrix determinant lemma,
we find that

det
(

J[K]
)
= det (A)det

(
Ik + U>BA−1U

)
,

which is strictly positive since det (A) > 0 and det
(

Ik + U>BA−1U
)
> 0, given that

Ik + U>BA−1U is positive definite, as

U>BA−1U =
(

B1/2 A−1/2U
)> (

B1/2 A−1/2U
)

.

This shows that all principal minors of J are positive, i.e., that J is a P-matrix everywhere
in P . Hence, F is injective over P by Theorem 2.3. This shows there is a unique p ∈ Rn

++

that solves F(x, p) = 0.

Proof of Proposition 2.8

Let x ∈ (0, 1)m and p̆ := p(x) and let r, A1, A2, D, S1, S2, and p̃(·) be as defined in
the claim. We first show that p̆1, . . . , p̆r is a solution to (2.25). The first r equations of
F(x, p̆) = 0 can be written as

[
p̆1, . . . , p̆r

]>
−
[
b−1

1 , . . . , b−1
r

]>
= A−1

1 S>1 DS
[

p̆1e− p̆1b1 , . . . , p̆ne− p̆nbn
]>

. (2.56)

Since S>2 S1(S>1 S1)
−1S>1 = S>2 , premultiplying both sides of (2.56) by

A−1
2 S>2 S1(S>1 S1)

−1 A1,

it follows by definition of p̃(·) that

p̃( p̆1, . . . , p̆r)−
[
b−1

r+1, b−1
r+2, . . . , b−1

n

]>
= A−1

2 S>2 DS
[

p̆1e− p̆1b1 , . . . , p̆ne− p̆nbn
]>

(2.57)

=
[

p̆r+1, p̆r+2, . . . , p̆n

]>
−
[
b−1

r+1, b−1
r+2, . . . , b−1

n

]>
,
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which shows that

p̃j( p̆1, . . . , p̆r) = p̆j+r for all j ∈ {1, . . . , n− r}. (2.58)

By substituting the identity (2.58) into (2.56) for all j ∈ {1, . . . , n− r}, we obtain (2.25).
This shows that p̆1, . . . , p̆r is a solution to (2.25).

We now show that

p̆1, p̆2, . . . , p̆r, p̃1( p̆1, . . . , p̆r), p̃2( p̆1, . . . , p̆r), . . . , p̃n−r( p̆1, . . . , p̆r) (2.59)

is a solution to F(x, p) = 0. First, observe that (2.56) and (2.58) imply that (2.59) is a
solution to the first r equations of F(x, p) = 0. Analogously, (2.57) and (2.58) imply
that (2.59) is a solution to the last n − r equations of F(x, p) = 0. This shows that
(2.59) solves F(x, p) = 0. Furthermore, since there is a unique solution to F(x, p) = 0
by Proposition 2.7, it holds that the solution to (2.25) is also unique. Hence, there is
a unique solution to (2.25) that corresponds with the unique solution to F(x, p) = 0,
which completes the proof.



Chapter 3

Numerical Performance of Dynamic Pricing and

Learning Algorithms: A Controlled Experiment

3.1 Introduction

3.1.1 Background and motivation

It is becoming increasingly common in today’s online marketplaces that sellers’ pric-
ing decisions are determined by algorithms. The most striking example is arguably
Amazon.com, which made more than 2.5 million price changes each day during 2013—
a staggering figure that—most likely—has only increased ever since.1 Even the price
of the Bible—not the most obvious candidate for dynamic pricing—changes dozens of
times each year,2 which reveals that algorithmic pricing has gained a strong foothold in
today’s business practice. The complexities of optimally adjusting prices in response to
competitors’ prices, changing market circumstances, interactions between products in
the seller’s own portfolio, consumer reviews, incomplete information about consumers’
behavior, and many more factors that affect demand and revenue are obviously huge.
To address these complexities, a large stream of scientific literature has emerged that de-
signs pricing algorithms and analyzes their performance. A particularly large research
area has evolved around the question of learning: how should a seller price its products
to optimize profit when the price-demand relation is unknown upfront, and therefore
has to be learned from accumulating sales data?

1https://www.profitero.com/2013/12/profitero-reveals-that-amazon-com-makes-more-than-2-5-
million-price-changes-every-day/, visited on December 12, 2017.

2https://camelcamelcamel.com/Holy-Bible-James-Version-Burgundy/product/0718015592, visited on
December 12, 2017

59
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In recent years, a large number of studies have appeared that address this question from
a monopolist’s perspective (see literature review below). These research efforts have
led to an understanding of the structure of optimal pricing strategies in a monopolist
setting, in particular into the question of how much effort a seller should put into price
experiments in order to strike the right balance between ‘exploration’ (conducting price
experiments in order to learn the price-demand relation) and ‘exploitation’ (utilizing
statistical knowledge to maximize profit).

For pricing and learning in a competitive environment, the picture is rather different. It
turns out to be very difficult to give a useful qualitative assessment of a pricing strategy,
for the simple reason that its performance depends on the (unknown) pricing behavior
of competitors. A particular strategy may work very well when used against simplistic
pricing rules, but perform much worse against sophisticated algorithms. Even the right
performance measure is not clear (can one, e.g., improve upon the full information Nash
equilibrium?). Not only is theoretical understanding limited, there also does not appear
to be an extensive numerical study that compares the practical performance of different
algorithms.

Thus, there is a serious lack of understanding of the structure of well-performing pricing
strategies with learning and competition, while at the same time understanding these
pricing strategies is increasingly important from a practical viewpoint. This motivated
the organizers of the INFORMS Revenue Management & Pricing Section Conference
2017 to organize a dynamic pricing contest, in order to get insights into the numerical
performance of different pricing strategies in a competitive environment with incom-
plete information, and so to gain insight into the properties of well-performing pricing
policies. The results of this contest are reported in this chapter.

3.1.2 Literature review

The literature on ‘learning and earning’ from a monopolist’s perspective has gained
much attention in recent years: see, e.g., Araman and Caldentey (2009), Besbes and
Zeevi (2009), Farias and van Roy (2010), Harrison et al. (2012), Broder and Rusmevichien-
tong (2012), Chen and Farias (2013), Cheung et al. (2017), den Boer and Zwart (2014),
Keskin and Zeevi (2014), den Boer and Zwart (2015), and Johnson Ferreira et al. (2016).
A recent review of these and related references is provided by den Boer (2015). The main
takeaway from this strand of literature is the importance of having the ‘right’ amount
of price experimentation.

The importance of incorporating competition into these learning-and-earning models,
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and the potential detrimental effect of ignoring competition, has been demonstrated by
Schinkel et al. (2002), Tuinstra (2004), Bischi et al. (2004, 2007), Isler and Imhof (2008),
Cooper et al. (2015), and Anufriev et al. (2013), building forth on earlier work by Kirman
(Kirman, 1975, 1983, 1995, Brousseau and Kirman, 1992).

Various approaches have been adopted to incorporate competition into learning-and-
earning problems. Bertsimas and Perakis (2006) consider least-squares learning in an
oligopoly with finite inventories and linear demand function, and propose an algo-
rithm for estimation and pricing. Kwon et al. (2009), Li et al. (2010), and Chung et al.
(2012) adopt the framework of differential variational inequalities to study a capacitated
oligopoly, propose an algorithm to solve these equations, and estimate unknown pa-
rameters via Kalman filtering. Perakis and Sood (2006) (see also Friesz et al. (2012)) take
a robust-optimization approach to the dynamic oligopoly pricing problem, and study
Nash equilibrium policies. Fisher et al. (2017) conduct a field experiment with random-
ized prices to estimate a consumer-choice model that does not require competitor sales
observations, design a best-response pricing strategy, and test it with a field experiment
for a leading Chinese online retailer.

A sample from the extensive economics and econometrics literature that study asymp-
totic behavior of pricing strategies in competitive environments is Cyert and DeGroot
(1970), Kirman (1975), Aghion et al. (1993), Mirman et al. (1993), Fishman and Gandal
(1994), Harrington (1995), Bergemann and Valimaki (1996), Gallego (1998), Alepuz and
Urbano (1999), Rassenti et al. (2000), Belleflamme and Bloch (2001), Keller and Rady
(2003), and Dimitrova and Schlee (2003). These papers typically assume that a partic-
ular learning method is used by the competitors, and study whether the price process
converges to a Nash equilibrium.

The computer science literature also proposes several pricing-and-learning algorithms,
see, e.g., Greenwald and Kephart (1999), Dasgupta and Das (2000), Tesauro and Kephart
(2002), Kutschinski et al. (2003), Könönen (2006), Jumadinova and Dasgupta (2008, 2010),
and Ramezani et al. (2011). For a further discussion of these and other relevant papers,
we refer to Section 6.2 of den Boer (2015).

Finally, several simulation platforms have been designed to assess the performance of
pricing policies, see, e.g., DiMicco et al. (2003) or Boissier et al. (2017).



62 Chapter 3

3.1.3 Contributions

This chapter presents the results of the Dynamic Pricing Challenge, held on the occasion
of the 17th INFORMS Revenue Management and Pricing Section Conference on June
29-30, 2017, at the Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
For this challenge, participants were invited to submit pricing and learning algorithms
that would compete for revenue in a broad range of simulated market environments in
both duopoly and oligopoly settings. The extensive simulations that we ran allow us
to describe the numerical performance of various pricing and learning algorithms and
provides insight into the performance and properties of several types of policies. Given
that the participants submitted a wide variety of algorithms—such as bandit-type mod-
els, customer choice models, econometric regression models, machine learning models,
and greedy ad-hoc approaches—we are able to relate the performance of a broad range
of algorithms to different market structures.

Hence, this chapter offers a framework to analyze various paradigms from the field
of pricing and learning with competition and allows us to consider market dynamics
that are analytically intractable and can not be empirically analyzed due to practical
complications. As such, this chapter presents the results of a controlled experiment that
improve our understanding of pricing and learning with competition and helps to guide
future research. Our most important findings are as follows:

– The relative performance of the pricing and learning algorithms that we con-
sider varies substantially across different market dynamics. Some algorithms per-
form well in competitive environments, whereas others are better at exploiting
monopolist-like environments. None of the considered algorithms is able to dom-
inate all the others in all settings.

– The relative performance of the pricing and learning algorithms that we consider
varies substantially across oligopoly and duopoly markets. For example, algo-
rithms based on linear demand models perform very well in duopoly competi-
tions, whilst performing poorly in oligopolies.

– The algorithms that generate most revenue are more reliant on price-sensitive cus-
tomers, making them vulnerable to intensified competition. Other algorithms are
more robust in the sense that they were able to generate revenue from various
types of customers and attract more loyal customers.

– A greedy algorithm that follows the lowest-priced competitor in a tit-for-tat fash-
ion proves very difficult to outperform.
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– Ignoring competition is increasingly harmful when competition is more fierce, i.e.,
when the number of competitors in the market is large and/or price sensitivity of
the customers is high.

– The amount of exploration needs careful consideration as too much exploration
hurts performance significantly.

The organization of the rest of this chapter is as follows. In Section 3.2, we describe the
experimental design of this study. In Section 3.3 and 3.4, we present and discuss the
results, respectively. In Section 3.5, we conclude with managerial insights and practical
implications of our study for the industry.

3.2 Experimental Design

3.2.1 Experimental setting

This experiment was designed to resemble a market in which the competitors all sell a
single product to a group of heterogeneous customers. The competitors have no infor-
mation a priori on either the demand mechanism or the behavior of the other competi-
tors and are required to post a price before each (discrete) time period. Furthermore, it
was assumed that competitors can monitor each other’s prices, but only observe their
own sales (we refer to sales as the number of items sold). This is true for many markets
in reality, especially in online retailing, where retailers can monitor competitors’ prices
without much effort. Thus, the participants of this experiment were required to de-
sign an algorithm that would accept as input their own realized sales and the historical
prices of all competitors and, subsequently, as output returns their price for the period
to come. In addition, we assumed there are no inventory restrictions and, to give the
participants some direction, the following domain knowledge was made available: “it
seems unlikely that posting prices higher than 100 is optimal.” For convenience and
to prevent compatibility issues, all participants were required to submit their pricing
policy in Python 2.7.x or 3.x and no restrictions on the use of libraries were put in place.

To evaluate the performance of all submitted policies we ran 5000 simulations, where a
single simulation consists of two different settings of competitive market environments:

– Duopoly competition: all competitors compete in a round-robin setup, i.e., each
competitor competes with all other competitors in one-vs-one contests.

– Oligopoly competition: all competitors compete simultaneously against each other.
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Figure 3.1: Overview of the first two time periods of the simulation of an oligopoly
competition; pk and dk denote the price and sales quantity, respectively, of competitor
k ∈ {1, . . . , 8}.

In this experiment, there were eight competitors, which means that each simulation con-
sists of (8

2) = 28 duopolies and one oligopoly. The oligopoly competition is especially
insightful as it allows us to evaluate the competitors in a very competitive environment,
whereas the duopoly competition can help us understand what the relative strength of
the different competitors is.

In each of the 5000 simulations, the oligopoly competition and each of the duopoly com-
petitions consists of 1000 discrete time periods. This means that for each t ∈ {1, . . . , 1000},
each competitor posts a price for t + 1 and, subsequently, we generate sales quantities
for period t+ 1 from the undisclosed demand mechanism, and all competitors earn rev-
enue accordingly. This iterative process is illustrated for the oligopoly competition in
Figure 3.1 (for a duopoly competition, the scheme is the same except for the number of
competitors, which is then two).

We measure the performance of all competitors and determine the winner of the pricing
challenge as follows: In each simulation, we compute for each competitor its revenue
share of that particular simulation by averaging

– the competitor’s share of total revenue earned in the oligopoly competition and

– the competitor’s share of total revenue earned in the duopoly competitions.

The latter is computed by aggregating all the revenue earned in the 28 duopoly compe-
titions, and computing the competitors’ revenue shares accordingly. More precisely, for
simulation i ∈ {1, . . . , 5000}, let xij be the revenue earned by competitor j ∈ {1, . . . , 8}
in the oligopoly competition, and let yijk be the revenue earned by competitor j ∈
{1, . . . , 8} in the duopoly competition versus competitor k ∈ {1, . . . , 8}. We define the
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revenue share of competitor j in simulation i as follows:

1
2
(x̄ij + ȳij), where x̄ij :=

xij

∑8
k=1 xik

and ȳij :=
∑8

k=1 yijk

∑8
u=1 ∑8

k=1 yiuk
. (3.1)

Here, we set yijj = 0 for all i ∈ {1, . . . , 5000} and j ∈ {1, . . . , 8}. In (3.1), x̄ij and ȳij repre-
sent the oligopoly and duopoly revenue share, respectively, of competitor j ∈ {1, . . . , 8}
in simulation i ∈ {1, . . . , 5000}. Note that, as such, a competitor’s own duopoly revenue
share depends on the revenue earned in competitions between other competitors. This
means it is not beneficial to earn a high revenue share in a duopoly competition where
relatively little revenue is earned.

The final score for competitor j ∈ {1, . . . , 8} is simply the average over all its revenue
shares, i.e., its final score equals 1

5000 ∑5000
i=1

1
2 (x̄ij + ȳij). This way of constructing a final

score is a design choice of the pricing contest; clearly, numerous alternative ways to
measure performance are conceivable.

3.2.2 Competitor algorithms

Table 3.1 summarizes the pricing and learning policies of all the competing algorithms.
In the appendix contained in Section 3.A, we provide more detailed descriptions of the
algorithms. The competitors rely on a wide range of demand models:

– linear models: OLS and WLS (ordinary and weighted least squares, respectively),

– bandit models: B-GRID, B-BUCKET, and B-MODEL (bandits where the arms pertain
to price points in a grid, price buckets, and demand models, respectively),

– customer choice modeling: LOGIT,

– machine learning: ML, and

– greedy price-matching heuristic: GREEDY.

All competitors randomize prices in the first periods, and all competitors except LOGIT

and GREEDY also engage in exploration later on, to capture possible non-stationary dy-
namics. Regarding the modeling of competitor behavior, most competitors use variants
of exponential smoothing to predict competitor prices, and optimize own prices accord-
ingly. Others model competitors’ prices as multivariate normal random variables, use
the median of historical prices as predictor, or ignore competition altogether. All non-
bandit models use a line search to optimize their own revenue with respect to price,
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except for WLS, which optimizes own revenue relative to the revenue earned by the
competition.
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3.2.3 Demand mechanism

The design of our demand mechanism is built on the belief that it should resemble a
competitive market with a heterogeneous customer base, as is often observed in prac-
tice. Meanwhile, we have to carefully manage the complexity of the demand mech-
anism to allow for evaluation, interpretation, and further analysis following the con-
test. To this end, we assume that the arrival process and demand mechanism are time-
independent within a simulation. The customer population consists of three segments,
namely loyal customers, shoppers, and scientists, who all have their own parameterized
demand functions, as we describe in the following sections. We emphasize once more
that the participants of this competition were not aware of any of the aforementioned
assumptions regarding the market structure. All in all, we realize that the outcomes
inevitably depend on the ground truth that we construct here, but it is intended to be
versatile enough to reward the competitors that are best able to learn various types of
demand dynamics.

Arrivals and population composition

In simulation i ∈ {1, . . . , 5000}, we have the following arrival process and customer
population composition. Customers arrive according to a Poisson process, with mean
arrivals per time period equal to λi, where λi ∼ U(50, 150). Here and throughout, if
we write x ∼ F, we mean that x is sampled from (and not distributed as) F, i.e., x is a
realization of F. Let θsho

i , θ
loy
i , and θsci

i , be the share of shoppers, loyals, and scientists,
respectively, where θsho

i + θ
loy
i + θsci

i = 1 and θsho
i , θ

loy
i , θsci

i ∈ (0, 1). The scientist seg-
ment consists of two subsegments, namely PhDs and professors, with respective shares
of γ

phd
i and γ

prof
i , where γ

phd
i + γ

prof
i = 1 and γ

phd
i , γ

prof
i ∈ (0, 1).

We summarize the sampling of arrivals in the code block “Arrival Process”. Here, n is

Algorithm 2 Arrival Process

for i ∈ {1, . . . , 5000} do
Sample arrival rate λi ∼ U(50, 150)
Sample segment shares θsho

i , θ
loy
i , θsci

i

Sample subsegment shares γ
phd
i , γ

prof
i

for t ∈ {1, . . . , 1000} do
Sample arrivals n ∼ Poisson(λi)

Sample segment arrivals nsho, nloy, nsci ∼ Multinom(n, (θsho
i , θ

loy
i , θsci

i ))

Sample subsegment arrivals nphd, nprof ∼ Multinom(nsci, (γphd
i , γ

prof
i ))



3.2 Experimental Design 69

the number of arriving customers in a given period, and consists of nsho shoppers, nloy

loyal customers, and nsci scientists, i.e., n = nsho + nloy + nsci. The scientist segment
consists of nphd PhDs and nprof professors, i.e., nsci = nphd + nprof.

Demand of shoppers and loyal customers

In simulation i ∈ {1, . . . , 5000}, the willingness-to-pay (WTP) of shoppers is exponen-
tially distributed with mean βsho

i , where βsho
i ∼ U(5, 15). This means that, in each time

period in simulation i, we sample a WTP from the exponential distribution with mean
βsho

i for each arriving shopper. Each shopper whose WTP exceeds the lowest price of-
fered in the market, buys from the competitor that offers the lowest price, and otherwise
leaves without buying anything. Ties are broken randomly.

The WTP of the loyal customers in simulation i ∈ {1, . . . , 5000} is exponentially dis-
tributed as well, but with mean β

loy
i , where β

loy
i = u · βsho

i and u ∼ U(1.5, 2.0). This
makes the loyal customers relatively price insensitive compared to shoppers, as one
would expect from loyal customers. In each time period, for each arriving loyal cus-
tomer, we sample a WTP from the exponential distribution with mean β

loy
i , and assign

this customer randomly to one of the competitors. This assignment determines to which
competitor each customer is loyal to. We compare the WTP of each arriving loyal cus-
tomer with the price set by the competitor that this customer is loyal to: they purchase
if their WTP exceeds the price offered, and otherwise leave without making a purchase.

Demand scientists

The demand of the scientists is assumed to follow a finite-mixture logit model, or latent-
class logit model, where the mixture comprises two components: professors and PhDs.
This implies that the professors and PhDs both choose according to a logit model, but
with their own respective parameters, which are set as follows.

Consider simulation i ∈ {1, . . . , 5000} and let m be the number of competitors in the
market, i.e., m = 2 in any duopoly competitions and m = 8 in the oligopoly com-
petitions. In a given period, suppose the posted prices in the market are equal to
p = (p1, . . . , pm). We define the probability that an arriving PhD purchases from com-
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petitor k ∈ {1, . . . , m} as follows:

qphd
ki (p) =

exp
(

α
phd
i − β

phd
mi · pk

)
1 + ∑n

j=1 exp
(

α
phd
i − β

phd
mi · pj

) ,

and we define qprof
ki (p) for professors in a similar fashion.

We sample the parameters α
phd
i , β

phd
mi , α

prof
i , and β

prof
mi to ensure that, if you optimize

the price for each of the segments separately, then no unrealistically large differences in
optimal prices occur. In doing so, we prevent that some customers are willing to pay a
price that is orders of magnitudes larger than the price that other customers are willing
to pay. To this end, we set α

phd
i equal to βsho

i , and set β
phd
mi such that the optimal price

for the PhDs is within 50% of the optimal price for the shoppers (which is equal to βsho
i ).

This is achieved as follows,

α
phd
i = βsho

i

pphd
i := βsho

i · u, where u ∼ U(0.50, 1.50)

β
phd
mi =

1 + W
(

meα
phd
i −1

)
pphd

i

where W is the Lambert function, i.e., W(xex) = x, which is uniquely defined in this

case as neα
phd
i −1 > 0 (Akcay et al., 2010). Here, pphd

i is the price that maximizes revenue
if the market consists solely of PhDs (see Theorem 6 in Akcay et al. (2010)):

arg max
p∈Rm

+

m

∑
k=1

pkqphd
ki (p) = 1m pphd

i ,

where 1m pphd
i is understood to be an m-vector with each element equal to pphd

i . By
construction, pphd

i is within 50% of the average WTP of shoppers. In similar fashion, we
set

α
prof
i = α

phd
i · u, where u ∼ U(1.00, 1.25)

pprof
i := pphd

i · u, where u ∼ U(1.00, 1.50)

β
prof
mi =

1 + W
(

meα
prof
i −1

)
pprof

i
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so that the optimal price in a market consisting of only professors would be higher than
in a market that consists solely of PhDs, while keeping the price levels in line.

Demand mechanism summary

Summarizing, in each simulation i ∈ {1, . . . , 5000} and each time period t ∈ {1, . . . , 5000}
of each duopoly and oligopoly, we see on average λi · θsho

i arriving shoppers, λi · θloy
i

arriving loyals, λi · θsci
i · γ

phd
i arriving PhDs, and λi · θsci

i · γ
prof
i arriving professors. Each

of these customer types chooses according to its own parameterized demand function
(of which the parameters are constant throughout the simulation) as described in the
previous sections. This implies that in some simulations θ

loy
i ≈ 1, meaning that all com-

petitors are essentially monopolists, which should theoretically lead to higher prices,
lower sales quantities, and relatively high revenues. Another extreme, when θsho

i ≈ 1,
resembles a market in which there is perfect competition—each competitor offers the
same product to arriving customers that purchase the cheapest alternative available. In
this case, one would expect prices to spiral down over time.

The share of loyal customers in the market, which is 1
3 on average, is independent of

the number of competitors in the market. This means that in a duopoly, an arriving
customer is a loyal customer that is loyal to a specific competitor with probability 1

2 ·
1
3 , whereas in the oligopoly, this probability equals 1

8 · 1
3 . Therefore, by construction,

we anticipate the market to be more competitive in the oligopoly setting than in the
duopoly case, as one would expect from economic theory.

3.3 Results

In Section 3.3.1, we present a summary of the overall results. In Section 3.3.2 and 3.3.3,
the results of the oligopoly and duopoly competitions, respectively, are considered.

3.3.1 Overall results

In Figure 3.2, we provide boxplots of the revenue shares for the oligopoly, the duopoly,
and the overall competition. The boxplots in the left, middle, and right panel are based
on x̄ij, ȳij, and 1

2 (x̄ij + ȳij), respectively (all defined in Equation (3.1)). Figure 3.2 reveals
that LOGIT is the winner of the competition and that its success is primarily due to its su-
perior performance in the oligopoly competitions (left panel). Overall, the differences
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Figure 3.2: Boxplots of the revenue shares for the oligopoly competition, the duopoly
competitions, and the overall competition. In parenthesis after the names of the algo-
rithms are the rankings per competition part (e.g., WLS was the winner of the duopoly
part). Only the first 500 of 5000 simulations are used to construct the boxplots for the
sake of readability.

in performance in the oligopoly are substantial (left panel), whereas in the duopoly
competitions (middle panel) it proves to be more difficult to outperform one another.
Nevertheless, we observe remarkable differences in relative performance across the
oligopoly and duopoly competitions. For example, OLS nearly earns the highest mean
revenue share in the duopoly competitions (finishing second), while its performance in
the oligopoly competition is on average the worst amongst all competitors. Note how-
ever that, despite its poor average, OLS did perform particularly well on some occasions
(earning almost 60% of all revenue on one occasion). The other way around, we ob-
serve that competitor GREEDY performs poorly in the duopoly competitions, but that its
performance in the oligopoly competition is relatively good, being second placed only
after LOGIT. Furthermore, we observe that B-BUCKET, B-GRID, and ML are consistently
outperformed, as they are in the bottom half in both the duopoly and oligopoly compe-
tition. In the following sections, we analyze the aforementioned observations in greater
detail and make more detailed comparisons between the different pricing strategies in
the market.
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Figure 3.3: Realizations of prices and revenue for simulation 4955. The solid line repre-
sents the prices and pertains to the left axis. The red dots represent the revenue earned
and pertain to the right axis. In parenthesis is the total accumulated revenue. The seg-
ment shares are equal to θsho = 0.05, θloy = 0.72, and θsci = 0.23.

3.3.2 Oligopoly competition

In this section, we uncover what causes the substantial differences in performance in
the oligopoly competition, which are observable in the first panel of Figure 3.2. We an-
alyze how the competitors differ in terms of realized sales quantities and prices posted,
and analyze how their performance varies as the market composition, i.e., the shares of
segments, differs across simulations.

In Figure 3.3, we present the price and revenue realizations of a single simulation, to
demonstrate what a simulation typically looks like. Although a single simulation is not
representative for performance in general, we found that the simulation in Figure 3.3
is demonstrative for most of the scenarios that we visually inspected. In particular, the
prices of LOGIT, B-MODEL, GREEDY, and WLS converge (after engaging in price explo-
ration), whilst the other competitors show more erratic price paths. For example, B-
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Figure 3.4: For the oligopoly competition (a) mean sales per time period and (b) mean
revenue per arriving customer, split out over the three customer segments.

BUCKET and B-GRID put a lot of emphasis on exploration, without eventually converg-
ing to a competitive price range. This is arguably due to the fact that these algorithms
engage in active price exploration with a 20% probability in each period. OLS initially
seems to converge to a competitive price, but from around time period 300 onwards
it fluctuates around a relatively high price level, earning hardly any revenue. We ob-
serve that ML initiates many exploration cycles around a cosine function, which affects
its performance negatively in this stationary environment.

To show how the competitors differ in sales per customer segment, Figure 3.4(a) il-
lustrates the mean sales per time period per segment for each competitor (note that
sales is understood to be a quantity here and throughout). From this figure, it follows
that the three best-performing algorithms in the oligopoly competitions, namely LOGIT,
GREEDY, and B-MODEL (see the left panel of Figure 3.2), are also the ones that generate
the highest sales. Furthermore, LOGIT not only generates the highest total sales, but it
is also able to generate the highest sales per customer type. This is likely due to the
fact that, if a competitor generates high sales in the shopper segment, this means that
it is frequently the lowest priced competitor in the market, which means that the sci-
entists and its loyal customers are also likely to buy. Thus, high sales in the shopper
segment lead automatically to relatively high sales in the other two segments. In addi-
tion, it is remarkable that WLS generates much lower sales than OLS, while, according to
Figure 3.2, WLS performs significantly better in terms of revenue generation. Arguably,
this is due to the fact that WLS sells predominantly to the high-paying loyal segment,
whereas OLS generates its revenue primarily from the shopper and scientist segments,
which are more price sensitive. Overall, the competitors that attract the shoppers and
scientists are capable of generating high sales, which concurs with the observation that
for each competitor the potential sales from shoppers and scientists is much larger than
from loyal customers (as was discussed in the final part of Section 3.2.3).
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Figure 3.5: Boxplots of the prices posted in the oligopoly in 5000 randomly chosen time
periods. The bars and crosses denote the median and mean, respectively. In brackets
are the corresponding number of outliers.

Figure 3.4(b) illustrates the mean revenue per arriving customer for each competitor
(e.g., LOGIT makes on average about 0.40 from an arriving shopper, whereas B-GRID

practically earns nothing in this case). The figure reveals that the competitors’ distri-
butions of earnings over the customer segments vary substantially: the top performers
(LOGIT, GREEDY, and B-MODEL) make the majority of their income from shoppers and
scientists, while the other algorithms earn relatively much from the loyal customer seg-
ment. These observations concur with Figure 3.5, which contains boxplots of the prices
posted by all competitors.

Regarding price experimentation, we observe from Figure 3.5 that OLS’s policy induces
a very wide price range, with its first quartile around twenty and the third quartile just
below eighty, resembling a Gaussian distribution of prices. GREEDY does not engage
in much price experimentation, as expected given its construction. The other boxplots
indicate that the price distributions all have a heavy right tail; these competitors engage
in exploration coincidentally, while pricing around a relatively small interval for most
of the time.

Figure 3.6 illustrates the mean prices for different shares of loyal customers. This is in-
sightful, since when the share of loyal customers increases from zero to one, the market
moves from a very competitive market to a market in which every competitor is essen-
tially a monopolist. One theoretically expects that competitors post higher prices once
their pricing power increases. However, from the figure, we observe that the prices
of three of the four worst-performers, namely OLS, B-GRID, and ML, do not increase in
the share of loyal customers. On the other hand, the prices of LOGIT, GREEDY, WLS, B-
BUCKET, and B-MODEL, do increase in the share of loyal customers. This indicates that
these competitors are better capable of increasing prices when pricing power increases.
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Figure 3.6: Mean prices for various levels of the share of loyal customers θloy.

Figure 3.7 and 3.8 illustrate the mean revenue per time period for various segment
shares of loyal customers and scientists, respectively.3 From Figure 3.7 we observe that,
in general, revenues increase as the share of loyal customers increases, as one would
theoretically expect. However, some competitors are better capable of exploiting the in-
crease in pricing power than others—for example, WLS’s relative performance improves
substantially as θloy increases, while LOGIT’s relative performance deteriorates. On the
other hand, in Figure 3.8 we observe that performance across competitors diverges as
the share of scientists increases. Most notably, LOGIT’s relative performance increases
substantially, which we attribute to the fact that LOGIT’s demand specification is able to
closely resemble the demand function of the scientists (which is a finite mixture of logit
demand functions).

3.3.3 Duopoly competition

From the middle panel of Figure 3.2 it follows that, in the duopoly competitions, the
differences in performance are smaller than in the oligopoly competition (left panel in
Figure 3.2). There are two reasons why this is the case. First of all, the share of loyal cus-
tomers is relatively large in the duopoly (see the discussion at the end of Section 3.2.3).
This means that competitors have in general more pricing power, whilst only having to
consider one other competitor, which makes it easier to earn revenue and more difficult
to outperform one another. Second of all, the performance is not transitive in a sense

3The figure for the shopper segment is omitted to save space since it is very similar to Figure 3.7, except
for that the revenues decrease in the shopper share.
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Figure 3.8: Mean revenue per time period
for various levels of θsci.

that “if A beats B and B beats C, then A beats C”, so that differences in performance tend
to cancel out over the duopoly competitions. Nonetheless, the duopolies are interesting
to analyze the relative performance of the various pricing policies.

For a single simulation, in Figure 3.9 we provide the realized prices and revenue of
duopolies in which the top performer of the duopoly part, namely WLS, was involved.4

The figure reveals that in the duopoly in which WLS and LOGIT compete, prices and rev-
enue are both relatively low (this is not only the case in this example, but is a structural
property, which we show below). It is interesting to see that GREEDY’s performance is
weakened by its mechanism that resets prices to 5 if prices get too low (see Table 3.1);
these are the bumps that are visible in the bottom-right panel of Figure 3.9. As was the
case in the oligopoly, OLS is not able to set a competitive price level consistently.

In Table 3.2, we provide the mean revenue per time period for the duopoly competi-
tions. The last column contains the row-wise averages, which indicate how much rev-
enue each algorithm makes on average. Similarly, the final row contains column-wise
averages, which indicate how much revenue other algorithms were able to make against
the corresponding algorithm (e.g., LOGIT makes on average 234 per time period, while
the other competitors make on average 218 when competing with LOGIT). Table 3.2
confirms the earlier observation that the market between WLS and LOGIT is on average
the smallest in terms of revenue (153 + 96 = 249 revenue per time period). In general,
WLS proves to be very hard to generate revenue against since, on average, competitors
earn only 175 per time period when competing with WLS. Meanwhile, WLS is able to
generate substantial revenue with an average revenue per time period of 240. This is
remarkable, as WLS performs poorly in the oligopoly.

4A plot of WLS vs B-GRID is omitted to save space, but is very similar to the plot of WLS vs B-BUCKET.
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LOGIT 252 221 319 238 242 266 96 234
OLS 235 172 265 210 295 256 249 240

B-BUCKET 175 249 256 207 272 198 175 219
B-GRID 196 247 169 239 306 274 181 230

B-MODEL 250 231 185 241 270 176 218 224
ML 249 221 177 236 203 216 186 213

GREEDY 267 260 206 273 196 209 123 219
WLS 153 257 234 361 219 317 140 240

average 218 245 195 279 216 273 218 175

Table 3.2: The pairwise mean revenue per time period for all duopolies. Each cell in-
dicates how much revenue the algorithm in the corresponding row was able to earn
against the algorithm in the corresponding column on average per time period. Green
(red) indicates if the amount was higher (lower) than that of the corresponding oppo-
nent.
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Figure 3.10: The number in each cell indicates the mean price that the algorithm in
the corresponding row posted against the algorithm in the corresponding column. The
color of each cell pertains to the coefficient of variation (i.e., the ratio of the standard
deviation to the mean) and corresponds to the color bar on the right.

Table 3.2 also reveals that there is no competitor that loses against all other competitors.
Even the worst performer (based on Figure 3.2), namely ML, is able to defeat other com-
petitors, namely, LOGIT and GREEDY, which is remarkable as both perform very well
overall. Based on Table 3.2, we observe that GREEDY has average performance—never
earning much more (or much less) than its opponents. This is expected, since it simply
follows its opponent’s actions, without exploiting any weaknesses. The other top per-
former in the duopoly part, namely OLS, only beats B-GRID and ML according to Table
3.2. Nonetheless, we observe that OLS on average earns the same amount of revenue,
namely 240, as WLS.

All in all, Table 3.2 reveals that each competitor’s performance is very much dependent
on the opponent’s policy and that some algorithms that perform well in the oligopoly
(e.g., GREEDY), struggle in the duopolies and vice versa (e.g., OLS). This, once more,
confirms the intrinsic complexity of pricing and learning with competition.

To gain insight in the pricing levels of the competitors in the duopoly competitions, Fig-
ure 3.10 provides a heatmap of the mean prices and the coefficient of variation (the ratio
of the standard deviation to the mean). The numerical values correspond to the mean
prices posted and the color indicates the amount of dispersion in the prices. We ob-
serve that WLS consistently sets the lowest mean price and that OLS, which performed
equally well according to Figure 3.2, set substantially higher prices than WLS. Thus,
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OLS is able to be competitive while maintaining a higher overall price level. Other al-
gorithms, e.g., B-GRID, also maintain a high mean price level, but are less successful in
generating revenue. This can be explained by the fact that the price level of B-GRID is
much less dependent on its competitor, i.e., its mean price posted is always around 20,
whereas OLS varies its pricing level across its competitors, thereby being able to gener-
ate more revenue. Regarding the dispersion of prices, we observe that WLS, B-MODEL,
and ML are the least experimental in setting prices and that especially B-BUCKET is very
experimental, which is in correspondence with Figure 3.3 and 3.9.

3.4 Discussion

In terms of overall performance, LOGIT was the most effective algorithm in this com-
petition — it earns most revenue in the oligopoly part and is also competitive in the
duopoly part, where it finishes in third place, just behind OLS and WLS. Its success can
partly be explained by the fact that its demand specification closely resembles the de-
mand function of the scientist segment, which leads to the highest revenue per arriving
scientist (see Figure 3.4(b) and 3.8). However, the primary reason for its success is un-
doubtedly the fact that LOGIT is able to identify and exploit the revenue potential of the
shopper segment by setting low prices. This strategy negatively affects performance
when pricing power increases (see Figure 3.7), but proves beneficial overall.

Arguably, if GREEDY would not have had arrangements in place to prevent a “race to
the bottom”, LOGIT’s revenue would have been substantially lower. This indicates that
LOGIT’s low-pricing strategy does not perform well in all circumstances—its depen-
dency on shoppers and scientists makes LOGIT vulnerable in case the market consists
of more competitors that are aggressive on price. In terms of robustness, B-MODEL per-
forms better as it is less reliant on the price-sensitive segments by selling more to loyal
customers, whilst earning substantial revenue (Figure 3.4).

Regarding the two algorithms that rely on linear demand models, namely WLS and OLS,
the difference in their performance between the duopoly and oligopoly parts is strik-
ing. In the duopoly setup, WLS and OLS are the two top performers, thereby confirming
that the use of linear approximations for demand can give a simple and robust way to
model the price-demand relationship. WLS is designed to maximize own revenue mi-
nus its competitor’s revenue (see Table 3.1), which causes WLS to be very difficult to earn
revenue against (see Table 3.2). On the other hand, OLS ignores competition altogether,
which works surprisingly well in the duopoly competitions, and results in OLS posting
much higher prices than WLS according to Figure 3.10 (but generating roughly the same
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amount of revenue). In the oligopoly competitions, OLS is the worst-performing algo-
rithm (Figure 3.2), which indicates that ignoring competition is increasingly harmful as
competition increases (the relative performance of B-GRID, which also ignored compe-
tition, is also worse in the oligopoly competition than in the duopoly competition). The
performance of WLS in the oligopoly is also poor, compared to its performance in the
duopoly competitions. This shows that is ineffective to explicitly take into account all
competitors’ anticipated revenues.

Two of the bandit models, namely B-GRID and B-BUCKET, perform poorly due to a defect
in their designs, which only allows prices in very crudely discretized price sets and pre-
vents them to set low prices consistently, thereby greatly hindering their performance.
The algorithms could be improved by making them more adaptive by, e.g., allowing
poorly performing arms to be eliminated or adding additional arms close to the current
optimal value to allow the algorithm to focus in on profitable prices.

The other bandit model, namely B-MODEL, is competitive and finishes third overall. It
is designed to cope with different customer behaviors (e.g., bargain hunters and quality
seekers, see the appendix in Section 3.A for details) by assigning a different demand
model to each of its arms. The relative success of the B-MODEL appears to have been its
ability to generate above-average revenues from each customer segment as, e.g., illus-
trated in Figure 3.4 (b). One of its pitfalls has been its high level of exploration of price
points as illustrated in, e.g., Figures 3.3 and 3.5, especially in comparison to LOGIT and
GREEDY.

The approach of ML heavily relies on machine learning methods to model the demand
characteristics, and is designed to cope with non-stationarities, such as changes in the
price elasticity over time or changes in the overall demand volume. In doing so, ML

persists in engaging in exploration cycles, which hinders its performance in the sta-
tionary environment that we designed. This confirms the notion that one should only
experiment if the anticipated long-term revenue of doing so outweighs the short-term
cost.

Certainly the most simple strategy, namely GREEDY’s ad-hoc approach of matching the
lowest price in the market, turns out to be very effective in the oligopoly competi-
tion. Generally, it follows whoever set the lowest price, and is thereby able to gen-
erate substantial revenue—especially from scientists and shoppers. The arrangements
that GREEDY put in place to prevent downward price spirals are initiated frequently
(Figure 3.9), which could otherwise have led to even lower prices, and presumably de-
teriorating revenues. In the duopoly competitions, no competitor outperforms GREEDY

significantly, however, GREEDY is also not able to exploit competitors’ weaknesses ei-
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ther, leading to average performance.

3.5 Conclusion and Managerial Insights

This chapter presented the results of the Dynamic Pricing Challenge, held on the oc-
casion of the 17th INFORMS Revenue Management and Pricing Section Conference on
June 29-30, 2017, at the Centrum Wiskunde & Informatica, Amsterdam, The Nether-
lands. The participants of this pricing challenge submitted a wide variety of pricing
and learning algorithms, which we analyzed in a simulated market environment with
competition. As such, this chapter presents a framework in which various paradigms
from the field of pricing and learning with competition are analyzed by means of a con-
trolled experiment. This allows us to consider market dynamics that are not analytically
tractable or cannot be empirically analyzed due to practical complications.

Our analysis reveals a number of interesting insights, both from a practical and scientific
point of view. First of all, we show that the relative performance of pricing and learning
algorithms varies substantially across oligopoly and duopoly markets and across dif-
ferent market dynamics. This confirms the intrinsic complexity of pricing and learning
in the presence of competition. Most notably, none of the considered algorithms is able
to consistently outperform the other algorithms—each algorithm meets its Waterloo at
some point in the competition. This reveals that algorithm design needs careful consid-
eration, and that the structure and dynamics of the market need to be taken into account
to determine which algorithm is the best fit. Second, a greedy algorithm that follows
the lowest-priced competitor in a tit-for-tat fashion proves very difficult to outperform.
Especially in oligopolistic markets, it is able to generate substantial revenue from price-
sensitive customers, whilst showing average performance in the duopoly competitions.
Third, although the eventual winner was determined by revenue earned, the results
reveal that some algorithms are better capable of attracting customers from different
segments, thereby being less reliant on one specific segment and, therefore, being more
robust. The winning algorithm, e.g., is predominantly dependent on price-sensitive cus-
tomers that can easily be targeted by other competitors, whilst other competitors earn
their revenue from a more loyal customer base. Fourth, the results reveal that ignor-
ing competition is increasingly harmful when competition is more fierce, i.e., when the
number of competitors in the market is large and/or price sensitivity of the customers
is high. Finally, the analysis reveals that too much exploration can hurt performance
significantly.

Possible extensions to this study that could enhance its generalizability, is to impose
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more complex market dynamics in the simulations, such as temporal dependencies or
strategic customer behavior. Although it is appealing to do this, we chose not to do
so, since it makes it more cumbersome to relate the algorithms and their performance
to the dynamics of the market. Another interesting extension is that of a market in
which competitors offer assortments of products, and can change both prices and the
composition of their assortments over time.

3.A Appendix: Competitor Algorithm Descriptions

Competitor LOGIT

This competitor models the demand according to a finite mixture logit model, where
the mixture is taken over the number of possible customer arrivals. Thus, a probabil-
ity distribution over the number of arrivals in a single period is estimated and for each
possible number of arrivals, a different multinomial logit model is estimated as well.
Each multinomial logit model here, induces a probability distribution over the competi-
tors, i.e., it specifies with which probability an arriving customer purchases from each
competitor (including a no-purchase option). In doing so, it is assumed that the util-
ity of buying from competitor i is of the form a − bpi, where pi is the price posted by
competitor i and a and b are assumed to differ across the mixture components.

In practice, this competitor uses the first 100 time periods to estimate the maximum
number of arriving customers in a single time period. This is done by setting a price
of 0 for the first period and for each of the following 99 periods of this exploration
phase, the price is set as the minimum of the prices observed in the previous period.
After these 100 periods, an upper bound on the number of arrivals in a single period is
taken as the maximum realized demand in a single period multiplied by (m+ 1), i.e., the
number of competitors plus one. Subsequently, an Expectation-Maximization algorithm
is used to estimate a probability distribution over the number of arrivals, as well as the
parameters of the multinomial logit models. All these parameters are updated every 20
time periods.

To optimize prices, in every period the competitors’ prices for the period to come are
predicted. For this purpose, it is assumed that the sorted prices of the competitors fol-
low a multivariate normal distribution, where the sorted prices are used to mitigate
the effect of price symmetries. Subsequently, 1000 competitor prices are sampled from
the multivariate normal distribution and the revenue function is approximated by av-
eraging over these realizations. To optimize the price, a crude line search over a dis-
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cretization of the assumed price space (0, 100) is executed and the price with the highest
revenue is chosen.

Competitor OLS

The approach of this competitor to pricing is to favor simplicity. The view is taken that
competitors’ actions cannot be controlled and that for all intents and purposes, they are
random. Thus, they are modeled as an aggregate source of random “noise” and the fo-
cus is on how the competitor’s own price influences demand in this environment. The
algorithm is split into an exploration segment and a “running” segment. The explo-
ration segment lasts for the first 40 periods and the running segment lasts for the rest of
the 960 periods.

In the exploration segment, the algorithm explores the field to ensure sufficient vari-
ation in data. In each period, a price is sampled uniformly from the interval (0, 100).
After the exploration period, the algorithm enters the running segment. In the running
segment, the majority of the time consists of estimating a demand curve based only on
the competitor’s own historical prices and optimizing accordingly. To do so, four linear
regression models are fit, taking all combinations of log-transformation of both inde-
pendent (price) and dependent (demand) variables, and the model with the highest R2

value is chosen (OLS is an acronym for ordinary least squares). Using this model, the
price is optimized using a crude line search and, subsequently, a small perturbation is
added to the price for further exploration.

Finally, in each period in the running segment there is a 5% chance of further exploration
and a 1% chance of “competitive disruption”. Here, “competitive disruption” is an
action designed to intentionally confuse competitors who attempt to predict competitor
prices or who use competitor prices in their model. When this action is initiated the
model sets the price to zero in an attempt to confuse competitors via extreme actions.

Competitor B-GRID

B-GRID is adapted from the ε-greedy multi-armed bandit algorithm (Sutton and Barto,
1998). It assumes a bandit framework with ten arms, where the arms pertain to the
prices 10, 20, . . . , 100 (B-GRID is an acronym for bandit on a grid). Thus selecting the first
arm means posting a price of 10. This algorithm neglects competition and simply keeps
track of the average revenue under each arm. With probability ε, an arm is selected
randomly, whereas with probability 1− ε, the arm that has the highest observed average
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revenue is selected. The exploration parameter ε is set to 0.2, so that on average 200 time
periods are used for exploration and 800 for exploitation.

Competitor B-BUCKET

This competitor considers the problem of learning and pricing in a multi-armed bandit
framework similar to that of B-GRID. In doing so, the optimal price is assumed to be
contained in the interval (0, 100], which is split into ten intervals of even length, i.e., it is
split into price buckets (0, 10], (10, 20], . . . , (90, 100]. Each of these price buckets pertains
to one arm and selecting a specific arm means posting a price that is uniformly sampled
from the corresponding price bucket (B-BUCKET is an acronym for bandit with buckets).

To incorporate the competitors’ prices, it is assumed that the arms’ values, i.e., revenues,
depend on the prices posted by the other competitors. More precisely, in each time
period the competitors’ modal price bucket is forecast using exponential smoothing.
The modal price bucket is the bucket that is predicted to contain most of the competitors’
prices. We assume that the optimal choice of price to offer is dependent on this modal
price bucket.

In practice this works as follows. At each time step, with probability ε an exploration
step is performed in which an arm is selected randomly. Alternatively, with probability
1− ε, an exploitation step is undertaken. In this case, the algorithm selects a price from
the price bucket with the highest observed average revenue for the predicted modal
price bucket. The exploration parameter ε is set to 0.2, so that on average 200 time
periods are used for exploration and 800 for exploitation.

Competitor B-MODEL

This competitor advocates a bandit formulation of the problem as well, although its de-
sign differs conceptually from that of B-BUCKET and B-GRID. Where the aforementioned
two competitors assign prices (or prices buckets) to arms, here, an arm pertains to a de-
mand model (B-MODEL is an acronym for bandit with models). The demand models
that constitute the four arms are the following:

– Demand Model 1 (Bargain hunters) assumes that the distribution of customers’
willingness to pay (WTP) is normally distributed and that customers select a com-
petitor’s price from the subset of prices that fall below their WTP with probability

proportional to
(

WTP−pi
WTP

)b
, where pi is the price being offered by competitor i and
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b is a parameter that influences customers’ price sensitivity. High (low) values of
b > 1 (< 1) capture customer populations that are highly (in)sensitive to prices
close to their reserve price. In general this first demand model captures bargain
hunters as in all cases customers will tend to choose low prices where possible.

– Demand Model 2 (Quality seekers) is a variant of the first demand model but the

reserve price of a customer is proportional to
(

1− WTP−pi
WTP

)c
. This model captures

customers who use price as an indicator of quality. The parameter c has a similar
interpretation to b above.

– Demand Model 3 (Cheapest price subset) assumes that each customer sees a dif-
ferent random subset of the available prices. Customers are assumed to select the
cheapest price that is visible to them. The subset is assumed to include a random
number of options uniformly distributed between d and e, which are parameters
that can be estimated from the demand data.

The fourth arm alone is used for the first 100 time periods with a relatively high ex-
ploration rate to provide sufficient data for estimating the parameters a, b, c, and d of
the three demand models by means of simulated annealing. After 100 time periods the
reward vectors are reset and the four-armed bandit assumes control of pricing. Similar
to the previous two bandit algorithms, with probability ε an arm is selected randomly
and otherwise the most profitable arm is selected.

Optimal prices are chosen based on a forecast of the competitor price (duopoly) or the
profile of competitor prices (oligopoly), where we define the competitor price profile to
be an ordered list of competitors’ prices. For the oligopoly the competitor price profile
is forecast for the next time period using exponential smoothing with trend. In order to
estimate the optimal price to charge under each demand model, the algorithm generates
a set of potential prices and the projected revenue is evaluated at each price, for the fore-
cast competitor price profile. The price with the highest predicted revenue is assumed
to be the best price for this demand model. In an exploitation step, the algorithm selects
the arm with the highest predicted revenue and offers the best price for this arm.

Competitor ML

The approach of this competitor is to rely on machine learning techniques to predict de-
mand and optimize prices accordingly (ML is an acronym for machine learning). Much
emphasis is put on learning the demand characteristics, as the algorithm dynamically
switches back and forth from exploration to exploitation mode over time. In exploration
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mode, during forty time periods, prices are set according to a cosine function around the
mean price level observed to test a variety of price levels and, possibly, confuse competi-
tors. After this learning cycle, demand is modeled using own prices and the competitor
prices as covariates by means of a variety of regression models (least-squares, ridge
regression, Lasso regression, Bayesian ridge regression, stochastic gradient descent re-
gression, and random forest) and the best model, in terms of demand prediction, is
selected through cross-validation.

Subsequently, the model of choice is used during an exploitation cycle of variable length:
the length is sampled uniformly between 70 and 150, however, if the revenue earned
deteriorates too fast, then, immediately a new exploration cycle is initiated. The price
is optimized by discretizing the price space and computing the revenue for all prices.
When a new exploration cycle starts, so either when the exploitation cycle was finished
or because the revenue deteriorated significantly, all historical data is disregarded for
the benefit of capturing shifts and shocks in the market most adequately.

Competitor GREEDY

This competitor advocates a particularly simple strategy: set the price as the minimum
price observed in the previous time period. To avoid a “race to the bottom” with another
competitor, the following facility is implemented: if the minimum price observed in the
previous period is lower than the 10% percentile of all the prices observed in the last
30 time periods, then the price for the coming period is set as the maximum of this
percentile and 5 (i.e., if this 10% percentile is smaller than 5, the price is set to 5).

Competitor WLS

The characterizing feature of this competitor is that it aims to maximize own revenue
relative to its competitors. More precisely, it attempts to maximize own revenue minus
the revenue of the competitor that earns the most revenue. In doing so, it is assumed
that demand of competitor k equals d(pk, pk̄), where pk is the price of competitor k, pk̄ is
the (m− 1)-vector with the prices of the competitors of k, and where the notion of time
is suppressed. In addition, it is assumed that d(·, ·) is independent of permutations in
its second argument, i.e., in the vector pk̄. Thus, this algorithm aims to obtain the price
that maximizes own revenue compared to the competitors, that is to solve in each time
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step,

max
p1
{p1d(p1, p1̄)−max{pkd(pk, pk̄) | k = 2, . . . , m}}. (3.2)

where the competitors are indexed 1 to m (the number of competitors) and WLS is in-
dexed 1. Note that p1 ∈ pk̄ for k ∈ {2, . . . , m}.

The demand function is assumed to be of the form d(x, y) = a + bx + c ∑m−1
k=1 yk and

the parameters a, b, and c are estimated using weighted least squares (hence the name
WLS). To capture different time-dependent aspects of demand, various schemes for the
weighting of observations are considered and evaluated based on the Median Absolute
Error of their historical demand predictions. The best weighting scheme is used in (3.2)
to optimize the price. For this purpose, the price for competitor k in the period to come
is predicted based on the median of the historical prices over some window, where
the window length is chosen to minimize the Median Absolute Error of historical price
predictions.

Finally, for the purpose of exploration, during the first ten periods prices are random-
ized to guarantee sufficient variance in the observations to estimate the demand mod-
els. In addition, when after these ten periods this competitor’s own price is constant
for three subsequent periods, the prices are randomized for the next period to induce
exploration.



Chapter 4

Bayesian Modeling of Customer Choice Across

Product Categories for Promotion Optimization

4.1 Introduction

4.1.1 Background and motivation

Consider an apparel retailer that intends to offer personalized promotions to its cus-
tomers. This retailer would have to address several issues, such as deciding on which
garments to offer to each customer and how much to discount these garments. In addi-
tion, one may ask the more profound question of whether it is beneficial to offer person-
alized promotions at all. Such questions concern the notion of customer heterogeneity
and the extent to which customer heterogeneity can be understood and leveraged to
the benefit of the retailer. This has become a popular subject in scientific research in the
fields of economics, marketing, and management science, especially since customer-
level purchasing data has become increasingly available.

In this chapter we model how customers choose which products to buy in different
product categories. Here, a product category is understood to be a selection of simi-
lar products, such as “men’s pullovers” at an apparel retailer or “dairy products” at a
grocery store. Our study concerns customer-level purchasing data of a leading Dutch
department store. We estimate how brand and price drive the decision-making process
on a customer level by relying on the rich literature concerning customer choice model-
ing. More precisely, for each customer, we assess price sensitivity and brand preferences
per category, and the extent to which these are similar across product categories. This
is relevant for targeted marketing, which we illustrate by presenting an algorithm that

89
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leverages customer-level transaction data to optimize personalized promotions. This
optimization problem consists of selecting the right combination of a product and cor-
responding discount level to offer as a personalized promotion to a customer.

4.1.2 Related literature

Multi-category shopping behavior has been an active field of research since the late
1990s. This can mainly be attributed to the increased availability of consumer grocery
shopping data through data providers, such as IRI and A.C. Nielsen, as well as the
development of appropriate methodology from the field of Bayesian statistics. One
of the main reasons is that it has been recognized that single-category models, which
ignore the cross-category dependencies studied in multi-category models, may lead to
a biased understanding of customer shopping behavior (Russell and Kamakura, 1998).

One particular stream of research focuses on modeling in which categories a customer
makes purchases on a given shopping trip—so-called category purchase incidence (e.g.,
Manchanda et al., 1999, Chib et al., 2002). These studies are mainly concerned with the
dependency between categories when deciding which categories to buy, e.g., because
categories are considered complements, such as pasta and pasta sauce. These studies do
not take into account the actual product that is purchased within a certain category. We
refer to Seetharaman et al. (2005) for an exhaustive overview of multi-category models.

Our work is more related to a stream of research that models brand (or product) choice
within categories and the dependencies in preferences across categories. Early work
is from Ainslie and Rossi (1998) and Erdem and Winer (1998). The former model the
effect of price and promotional efforts on brand choice across five product categories
(ketchup, peanut butter, stick margarine, toilet tissue, and canned tuna fish). The results
show that there is a positive correlation across categories in price and promotion sen-
sitivity of customers. The latter assess the dependency on brand preference across the
categories toothpaste and toothbrushes and find similar results. In a study on breakfast
foods and table syrup, Iyengar et al. (2003) investigate models that account for differ-
ent sources of incomplete information in a multi-category setting. For example, they
assess how multi-category models can be used to estimate preferences in a category
in which no purchases were observed, by leveraging purchases observed in other cate-
gories. In addition, in an attempt to address the curse of (parameter) dimensionality that
often frustrates the models discussed here, Singh et al. (2005) introduce methodology
in which the preferences for product attributes are projected onto a low-dimensional
space. The model is empirically validated on both related categories (potato chips, tor-
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tilla chips, and pretzels) and unrelated categories (sliced cheese and mayonnaise). More
recently, Duvvuri et al. (2007) and Ma et al. (2012) study the effects of price sensitivity
and brand choice, respectively, across categories that are often bought contemporane-
ously (i.e., complementary categories) by using data from, amongst others, cake mix and
cake frosting.

4.1.3 Contributions

Our work is distinctive from the existing literature in several ways. First of all, the
previous overview of existing literature reveals that—at least to our best knowledge—
modeling dependencies in product choice behavior across categories has exclusively
been considered in the context of grocery retailing. Presumably, this is due to the avail-
ability of high-quality transaction data in the grocery retailing industry. In the current
work, however, we consider purchasing behavior of durable goods (namely, apparel
products). A notable difference with respect to grocery retailing regards the fact that in
apparel retailing customers frequently leave the store without buying anything (which
remains unobserved), as opposed to grocery retailing. Consequently, we model cus-
tomer choice given that a customer purchases in a category, whereas in grocery retailing
one is able to condition on a visit to the store. We show empirically that in our setting
it is still possible to infer dependencies in purchasing behavior across categories. The
results show that a customer’s price sensitivity and brand preferences carry over across
categories, as has previously been observed in grocery retailing.

Second, for estimation and prediction, our model does not require that each customer
has purchased in all categories (we refer to this as the data being sparse). This means
that we map a customer’s revealed preferences (i.e., purchases) to parameter estimates
for categories in which no purchases were observed. Therefore, our model can predict
behavior in categories in which customers did not purchase before. This makes our
work complementary to that of Iyengar et al. (2003) on multi-category buying in grocery
retailing (see also Section 4.1.2).

Another distinctive feature of our work relates to the construction of choice sets, which
are defined as the set of alternatives available to a customer when making a purchase.
These choice sets are required in customer choice modeling to estimate a customer’s
preferences for certain product characteristics (such as price or brand). Given that we
only observe purchases, it is not trivial to infer (for each purchase incidence) the choice
set. To address this, we construct a procedure that approximates the continuously
changing product assortment of the retailer. This is much less of an issue for grocery
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retailers, who generally have a much more stable product assortment.

Finally, we show in a stylized setting how our framework can be used to determine,
for a given category, which combination of product and discount factor maximizes the
expected revenue. The results indicate that discounts should be given to customers that
are more price sensitive. In addition, discounts should be mostly given on products
that are not highly valued by the respective customers. As such, price discounts are
used as a tool to persuade customers to purchase products that likely would not have
been purchased otherwise.

4.1.4 Outline

This chapter is organized as follows. First, in Section 4.2, we present the details of the
hierarchical Bayesian model that we use in this study. Then, in Section 4.3, we present
a framework to sample from the joint distribution of model parameters (conditional on
the data). In Section 4.4, we present the results of our empirical study and Section 4.6
describes an application to promotion optimization. In Section 4.5, we conduct a simula-
tion study to assess the performance of our sampling framework. Finally, in Section 4.7
we conclude and provide directions for future research.

4.2 Model Specification

We assume that a customer, when choosing a product, latently assigns utility to the
alternatives available and, subsequently, purchases the product that maximizes the cus-
tomer’s utility. This assumption is fundamental to the field of customer choice model-
ing and, more generally, to the paradigm of random utility in economics (see, e.g., Train,
2009, Chapter 2). Specifically, we model customer choice behavior conditional on a cat-
egory purchase, i.e., given that a customer purchases in a given category, we model the
likelihood with which a certain alternative within that category is selected based on the
composition of the assortment and the characteristics of the alternatives available.

To formalize the notion of utility maximization, let n ∈ N be the number of customers
available in the dataset and let m ∈ N be the number of product categories. For each
i ∈ {1, . . . , n} and c ∈ {1, . . . , m}, let Pic be the set of products available to customer i
in category c. Furthermore, let k ∈ N be the number of product attributes and, for each
i ∈ {1, . . . , n}, c ∈ {1, . . . m}, and j ∈ Pic, let xijc ∈ Rk be the vector of product attributes
that defines product j in category c for customer i (e.g., price, brand, and color).
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Then, for each i ∈ {1, . . . , n}, c ∈ {1, . . . , m}, and j ∈ Pic, we assume that the random
utility that customer i assigns to product j from category c is equal to

Uijc := β>ic xijc + ε, (4.1)

where ε is i.i.d. standardized Gumbel distributed (i.e., P(ε ≤ t) = exp (− exp (−t)) for
all t ∈ R) and βic is a random vector with attribute weights of length k.

To allow for customer heterogeneity and to capture correlation in preferences for at-
tributes across categories, we assume that the attribute weights follow a multivariate
normal distribution:

βi :=
(

β>i1, β>i2, . . . , β>im
)>
∼ N (µ, Σ) , for each i ∈ {1, . . . , n}, (4.2)

where µ and Σ are of dimension km and km× km, respectively, and pertain to the expec-
tation and covariance of the multivariate normal distribution (recall that k is the number
of product attributes that defines a product and m is the number of categories).

The specification in (4.2) is flexible, since it captures dependencies between all attributes
of all products in all categories. For example, Σ measures the extent to which price
sensitivities in one category carry over to other categories. Similarly, we expect that if
a customer enjoys relatively high utility from a specific brand in a certain category, this
customer also favors this brand in other categories. In Section 4.6, we show how such
information can be leveraged for the purpose of offering personalized promotions. In
addition to flexibility, the normality assumption on βi makes the model tractable, since
it allows for efficient inference (we further elaborate on this in Section 4.3).

Our distributional assumption in (4.2) differs from, e.g., Ainslie and Rossi (1998) and
Singh et al. (2005), which use a decomposition of Σ to control for its dimensionality. In
this work, we allow for an unrestricted covariance matrix Σ, since its estimation does
not result in any problems when applied to our dataset and the results prove to be
satisfying.

For each i ∈ {1, . . . , n} and c ∈ {1, . . . , m}, it follows from (4.1) that—given that cus-
tomer i makes a purchase in category c—the conditional probability that customer i
chooses product j ∈ Pic is equal to (Train, 2009):

P

(
max
j′∈Pic

Uij′c = Uijc

∣∣∣∣ βic

)
=

exp
(

β>ic xijc
)

∑j′∈Pic
exp

(
β>ic xij′c

) , (4.3)

which is well-defined, since ties occur with probability zero.
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The model specification in (4.1)-(4.2) with corresponding choice probabilities in (4.3) is
known as a mixed multinomial logit (MML) model or random coefficients logit model.
In case the random parameters (βic) are assumed to be deterministic, we obtain the
multinomial logit (MNL) model, which is arguably the most famous customer choice
model and has been applied in many research areas and in practice (see, e.g., Train,
2009).

4.3 Model Estimation

4.3.1 Prior distributions

We adopt a Bayesian approach for the purpose of doing statistical inference on the
model introduced in the previous section. To this end, we consider the parameters of
the multivariate normal distribution in (4.2), namely µ and Σ, to be random variables
themselves. Due to the hierarchical structure of parameters, this approach is referred to
as hierarchical Bayesian modeling.

The objective then is to obtain distributions (or rather samples from distributions) of
{βi}i=1,...,n, µ, and Σ conditional on the data that we observe (these conditional distri-
butions are called posterior distributions in Bayesian terminology). The posterior dis-
tributions of {βi}i=1,...,n are useful for customer-level inference, as well as for targeted
marketing, as in our application of personalized promotions.

Taking a standard approach in Bayesian statistics (e.g., Rossi et al., 2012), we impose the
following prior distributions on µ and Σ:

Σ ∼ IW(ν, V) and (µ | Σ) ∼ N (µ, σ · Σ) , (4.4)

where IW denotes the Inverse Wishart distribution and where V ∈ Rkm×km, ν ∈
(km, ∞), µ ∈ Rkm, and σ ∈ R++ are hyperparameters.

The prior distributions in (4.4) are so-called conditionally conjugate priors, which allows
for efficient inference through Gibbs sampling, as will be shown below in Section 4.3.3.
Before doing so, in the following section we first formalize the information (i.e., trans-
actions) that we observe.
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4.3.2 Observables

For each i ∈ {1, . . . , n}, let τi ∈ N be the total number of products purchased by cus-
tomer i (i.e., these are historically observed). In addition, with slight abuse of notation,
for each i ∈ {1, . . . , n}, c ∈ {1, . . . , m}, and t ∈ {1, . . . , τi}, we denote by Pict the set of
products available to customer i in category c at the time of its tth purchase and, for each
j ∈ Pict, we let

yijct = 1

if customer i purchased product j from category c at purchase incidence t and 0 oth-
erwise. Observe that this implies that ∑m

c=1 ∑j∈Pict
yijct = 1 for each i ∈ {1, . . . , n}

and t ∈ {1, . . . , τi}. In addition, we do not require that, for each i ∈ {1, . . . , n} and
c ∈ {1, . . . , m}, it holds that

τi

∑
t=1

∑
j∈Pict

yijct > 0.

That is, we do not require that each customer made at least one purchase in each cate-
gory.

Abusing notation once more, for each i ∈ {1, . . . , n}, c ∈ {1, . . . , m}, t ∈ {1, . . . , τi}, and
j ∈ Pict, we denote by xijct ∈ Rk the attributes of product j in category c when customer
i made its tth purchase. Finally, for each i ∈ {1, . . . , n}, we denote all the data pertaining
to customer i by

zi :=
{
(yijct, xijct)

∣∣ j ∈ Pict, t ∈ {1, . . . , τi}, c ∈ {1, . . . , m}
}

.

4.3.3 Gibbs sampling

For the purpose of doing Bayesian inference, our objective is to sample from the joint
probability distribution function (pdf)

f (β1, . . . , βn, µ, Σ | z1, . . . , zn, θ) , (4.5)

where θ := (ν, V, µ, σ) are the hyperparameters and, as is common use in Bayesian
statistics, the arguments of f (.|.) are used to distinguish between pdf’s. These sam-
ples are then used to compute statistics (e.g., the mean of parameters) and to analyze
marginal distributions.

Given that the joint distribution in (4.5) is high-dimensional (at least, when the number
of customers is large) and of non-standard form, it is computationally intractable to



96 Chapter 4

sample from it directly a sufficient number times. To alleviate this, we rely on Markov
chain Monte Carlo (MCMC) methods, which work by constructing a Markov chain that
has the distribution of interest (the target distribution in Bayesian terminology) as its
stationary distribution (see, e.g., Gelman et al., 2013). The general idea is to sequentially
sample in regions of the distribution with relatively high probability mass, which make
these methods capable of sampling efficiently from high-dimensional distributions.

In particular, we rely on the Gibbs sampling algorithm, which sequentially samples
from subsets of the parameters. In our case, this works as follows. Let ζ ∈ N be the
number of required samples from (4.5). Then, for s = 1, . . . , ζ, we sequentially sample

β
(s)
i

∣∣∣ zi, µ(s−1), Σ(s−1) ∀i ∈ {1, . . . , n} (4.6)

Σ(s)
∣∣∣ β

(s)
1 , . . . , β

(s)
n , µ(s−1), θ (4.7)

µ(s)
∣∣∣ β

(s)
1 , . . . , β

(s)
n , Σ(s), θ, (4.8)

where the superscripts are used to index samples of the corresponding variables and
µ(0) and Σ(0) are, e.g., initialized randomly.

It can be shown that the sequence(
β
(1)
1 , . . . , β

(1)
n , µ(1), Σ(1)

)
, . . . ,

(
β
(ζ)
1 , . . . , β

(ζ)
n , µ(ζ), Σ(ζ)

)
constructed through (4.6)-(4.8) is a Markov chain that has a stationary distribution equal
to the joint distribution from (4.5) (Gelman et al., 2013). In practice, samples generated
by the Gibbs sampler are initially discarded—the so-called burn-in period—to let the
Markov chain reach its stationary distribution. Only samples generated after this burn-
in period are then used.

The last two Gibbs layers, i.e., (4.7) and (4.8), consist of well-documented steps that
rely on standard Bayesian theory on MCMC for multivariate regression models and are
described in the appendix. In (4.6), however, we require a method to sample βi for all
i ∈ {1, . . . , n} from its conditional posterior distribution. Given that this distribution
has a non-standard density that is only known up to a constant, we use another MCMC
algorithm, namely Metropolis-Hastings (MH), to generate samples (we elaborate on this
in the following section). In doing so, we use an MCMC algorithm (namely, MH), within
another MCMC algorithm (namely, Gibbs), which is often referred to as a Metropolis-
Hastings-within-Gibbs algorithm. We provide our proposed sampling scheme for step
(4.6) in the subsequent section.
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4.3.4 Metropolis-Hastings with sparse data

Let i ∈ {1, . . . , n}, c ∈ {1, . . . , m}, and s ∈ {2, . . . , ζ}. For ease of exposition, but without
loss of generality, suppose that customer i has only made purchases in category c (recall
that we refer to this as the data being sparse). The objective is to obtain a sample β

(s)
i

from the distribution of βi conditional on zi, µ(s−1), and Σ(s−1), cf. (4.6). To this end, we
split step (4.6) in the following two sub-layers:

β
(s)
ic

∣∣∣ zi, µ(s−1), Σ(s−1) (4.9)

β
(s)
i1 , . . . , β

(s)
i(c−1), β

(s)
i(c+1), . . . , β

(s)
im

∣∣∣ zi, µ(s−1), Σ(s−1), β
(s)
ic . (4.10)

For the sampling step in (4.9), we rely on an MH algorithm, which is an MCMC algo-
rithm that allows to sample from distributions that are only known up to a constant.
This suits our purpose, since the distribution corresponding to (4.9) is only known up
to a constant:

f
(

βic

∣∣∣ zi, µ(s−1), Σ(s−1)
)

∝ f (zi | βic) f
(

βic

∣∣∣ µ(s−1), Σ(s−1)
)

(4.11)

=
τi

∏
t=1

∏
j∈Pict

 eβ>ic xijct

∑j′∈Pict
eβ>ic xij′ct

yijct

· φ
(

βic

∣∣∣ µ
(s−1)
c , Σ(s−1)

c

)
,

where φ (· | µ, Σ) denotes the pdf of the multivariate normal distribution with mean µ

and covariance Σ and µ
(s−1)
c and Σ(s−1)

c denote the k elements of µ(s−1) and the k × k
sub-matrix of Σ(s−1) that pertain to category c.

The MH algorithm works sequentially by generating a candidate sample for β
(s)
ic based

on the current sample β
(s−1)
ic (thus forming a Markov chain) and, with a certain prob-

ability, accepting this candidate and otherwise rejecting it. In case it is accepted, the
candidate sample becomes β

(s)
ic (the next sample in the chain) and in case of rejection

the next sample is a repetition of β
(s−1)
ic (the current sample). The acceptance probability

is (partly) determined by the ratio of the likelihood in (4.11) evaluated at the candidate
sample to the likelihood in (4.11) evaluated at the current sample (so that candidate
samples from regions with high probability mass are more likely to be accepted).

The candidate samples are generated according to a so-called proposal distribution,
which can be set at our own discretion (e.g., adding random Gaussian noise to the cur-
rent sample is a popular choice, leading to the so-called random walk sampler). In case
the candidate samples are too close to the previous samples, the Markov chain explores
the target distribution very slowly, leading to an inefficient sampling algorithm (a sticky
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chain in the MCMC lingo). On the other hand, when candidates are sampled relatively
far from the current sample, the Markov chain tends to overshoot regions of high proba-
bility mass, leading to many candidates being rejected and, consequently, to inefficient
sampling as well.

To sample from (4.11), we adopt a MH algorithm that generates candidate samples
based on the current sample by adding a normally distributed increment with a mean
proportional to the gradient of the pdf at the current position of the chain. This implies
that every jump of the chain is biased in the direction of the gradient of the target dis-
tribution, thereby sampling towards areas of high probability mass. The algorithm is
called the truncated Metropolis-adjusted Langevin algorithm (TMALA) (Roberts et al.,
1996, Atchade, 2006) and works as follows.1

Let κ ∈ R++ be a hyperparameter and, for all β̃ic ∈ Rk, let

δ
(

β̃ic
)

:=
κ

κ ∨
∥∥∇ log f

(
β̃ic
∣∣ zi, µ(s−1), Σ(s−1)

)∥∥
2

∇ log f
(

β̃ic

∣∣∣ zi, µ(s−1), Σ(s−1)
)

,

(4.12)

where ∇ log f (β̃ic|·) denotes the gradient of the log of the posterior distribution of βic

from (4.11) evaluated at β̃ic and where we observe that ‖δ(β̃ic)‖2 ≤ κ for all β̃ic ∈ Rk.
Then, we sample β

(s)
ic from (4.11) by utilizing the following scheme, where γi ∈ R++ is

a hyperparameter.

1. Sample β̃ic randomly according to the following proposal distribution:

N
(

β
(s−1)
ic +

γi
2

Σ(s−1)δ
(

β
(s−1)
ic

)
, γiΣ(s−1)

)
. (4.13)

2. Set

α← 1∧
f
(

β̃ic

∣∣∣ zi, µ(s−1), Σ(s−1)
)

f
(

β
(s−1)
ic

∣∣∣ zi, µ(s−1), Σ(s−1)
) φ

(
β
(s−1)
ic

∣∣∣ β̃ic +
γi
2 Σ(s−1)δ

(
β̃ic
)

, γiΣ(s−1)
)

φ
(

β̃ic

∣∣∣ β
(s−1)
ic + γi

2 Σ(s−1)δ
(

β
(s−1)
ic

)
, γiΣ(s−1)

) .

(4.14)

3. With probability α, set
β
(s)
ic ← β̃ic,

1Initially, we implemented the standard random walk MH algorithm, however, this led to very slow con-
vergence to the stationarity distribution, where, as a convergence condition, we used the Gelman-Rubin di-
agnostic (Gelman and Rubin, 1992) and assumed that the chain converged to the stationary distribution if the
Gelman-Rubin diagnostic was at most 1.35 for all elements of µ and Σ.
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with probability 1− α, set
β
(s)
ic ← β

(s−1)
ic .

In (4.14), the acceptance probability α is constructed such that the resulting Markov
chain has a stationary distribution and that this distribution is equal to the target distri-
bution in (4.11).

For each i ∈ {1, . . . , n}, the parameter γi ∈ R++ scales the mean and covariance of the
proposal function in (4.13). For γi ↘ 0, the proposal distribution is degenerate with all
probability mass at β

(s−1)
ic . For larger values of γi, the variance of the proposal distribu-

tion increases and the mean shifts towards the gradient of the target distribution.

After sampling β
(s)
ic according to the previous scheme, we continue to step (4.10). For

notational convenience, suppose c = 1, i.e., customer i only made purchases in the first
category, and partition

µ(s−1) =

(
µ
(s−1)
1

µ
(s−1)
2

)
and Σ(s−1) =

(
Σ(s−1)

11 , Σ(s−1)
12

Σ(s−1)
21 , Σ(s−1)

22

)
,

where µ
(s−1)
1 ∈ Rk, µ

(s−1)
2 ∈ Rk(m−1), Σ(s−1)

11 ∈ Rk×k, Σ(s−1)
12 ∈ Rk×k(m−1), Σ(s−1)

21 ∈
Rk(m−1)×k, and Σ(s−1)

22 ∈ Rk(m−1)×k(m−1). It follows that step (4.10) is straightforward,
since (

βi2, . . . , βim

∣∣∣ zi, µ(s−1), Σ(s−1), β
(s)
i1

)
(4.15)

is normally distributed with mean equal to

µ
(s−1)
2 + Σ(s−1)

21

(
Σ(s−1)

11

)−1 (
β
(s)
i1 − µ

(s−1)
1

)
and covariance equal to

Σ(s−1)
22 − Σ(s−1)

21

(
Σ(s−1)

11

)−1
Σ(s−1)

12 .

Through (4.15), we map a customer’s revealed preferences to parameters pertaining to
categories in which no purchases were made (this is similar to the ‘full-demo’ scenario
in Iyengar et al. (2003)).
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4.3.5 Hyper parameter setting

The hyperparameters pertaining to the prior distributions in (4.4) are set to ν = 15,
V = ν · Ikm, µ̄ = 0km, and σ = 100 (where Ikm and 0km denote the identity matrix and
zero vector, respectively, of dimension km). In this way, we induce diffuse (i.e., high
variance) prior distributions on the parameters (Rossi et al., 2012) to let the data speak
for itself. The parameters that pertain to the TMALA sampling scheme in Section 4.3.4,
namely γi for all i ∈ {1, . . . , n} and κ, are determined as follows.

During the burn-in phase (i.e., during the first number of iterations used to let the
Markov chain reach its stationary distribution), we adaptively tune γi for all i ∈
{1, . . . , n}. The objective of doing this is to obtain favorable acceptance rates of the
TMALA sampler, i.e., to ensure that neither too many nor too few samples are accepted
(see also the discussion on this matter in Section 4.3.4). Theoretically, little is known
about what a good (let alone optimal) acceptance rate is. One of the few theoretical re-
sults on this matter is from Roberts et al. (1997), who prove for a special case that the
asymptotically optimal acceptance rate is equal to 0.234. For more exotic cases (such as
our Metropolis-Hastings-within-Gibbs scheme), acceptance rates between 0.1 and 0.6
have numerically proven to yield efficient samplers (Rosenthal et al., 2011). Numerical
experiments indicate that our sampling scheme is not sensitive to the acceptance rate
and that acceptance rates in the range from 0.2 to 0.6 yields satisfying results. There-
fore, we construct the following ad-hoc hyperparameter tuning approach:

– During the burn-in phase, each 100th iteration, update γi for each i ∈ {1, . . . , n} as
follows:

γi ←


1.25 · γi, if the acceptance rate over the last 100 draws was > 0.55,

0.75 · γi, if the acceptance rate over the last 100 draws was < 0.45,

γi, else.

By adapting γi only during the burn-in phase, and not during the actual sampling, we
ensure that the Markov chain remains ergodic. Alternative approaches, in which the
parameters are adapted during the actual sampling, while maintaining ergodicity, can
be found in Rosenthal et al. (2011).

The parameter κ ∈ R++ truncates the length of the log of the gradient of the target
distribution to κ, cf. (4.12). In doing so, we prevent the proposal function from over-
shooting areas of high probability mass. Numerical experiments that we ran confirm
that, when we do not truncate, the sampling scheme becomes inefficient exactly be-
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cause of this reason. A relatively broad range of values for κ yielded favorable results
and we decided to set it to 5.0.

4.4 Empirical Study

4.4.1 Data

We apply our model to transaction data of a Dutch department store. The data spans
the years 2011-2013 and regards purchases made by loyalty cardholders, which allows
us to attribute each purchase to an individual cardholder. The dataset comprises the
four largest brands (measured in terms of purchase incidence) for each of the product
categories men’s pullovers, men’s shirts, and men’s polos. We selected 12,000 customers
randomly that made at least two purchases in total. In doing so, we avoid biases that
occur when only customers are selected whose purchase frequency exceeds a certain
high threshold (Kim and Rossi, 1994). For each customer, one purchase was removed
from the training data to act as a hold-out sample.

We include brand and price as attributes, which means that we assume that each prod-
uct is defined by these two attributes. Consequently, two products of the same category,
brand, and price are treated as the same product, even if they differ in, e.g., color, fabric
or size. An opportunistic approach is to classify each distinguishable product as a sepa-
rate product in the model. However, this requires the inclusion of all the attributes that
uniquely define a certain product. In the current setting, this is intractable given that
the number of parameters increases dramatically, while the number of observations per
product decreases in the number of product attributes.

The number of customers in the dataset is large relative to the number of observations
per customer. This can be observed from Table 4.1, which represents the distribution
of purchases across categories and Table 4.2, which presents the number of different
categories in which each customer makes a purchase (the brand names are anonymized
to guarantee confidentiality). On average, we observe 3.3 purchases per customer.

Although we consider the data cleaning as a vital part of this work, a detailed descrip-
tion is omitted, since it consists of rather straightforward and tedious steps, such as
removing duplicates and accounting for returned items and erroneous scanner infor-
mation.
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Table 4.1: The number of purchases observed per category, the number of customers
that purchased in the respective categories, and the brands per category.

Purchases Customers Brands

Men’s shirts 22,275 8,330 A, B, D, E
Men’s pullovers 12,664 6,312 A, B, C, F
Men’s polos 4,975 2,900 A, B, C, G

Table 4.2: The number of customers that made a purchase in 1, 2 and 3 different cate-
gories, respectively.

Number of different categories bought 1 2 3

Customers 7,408 3,642 950 12,000

4.4.2 Choice set construction

The construction of the choice sets (i.e., the set of alternatives available each time a pur-
chase was made) is challenging, since we only observe transactions and do not observe
which products were available for which price at each moment in time. To this end, we
assume a product is available in all sizes from the first day it is purchased, until the day
a purchase is observed for the last time. Furthermore, at each point in time, the price is
set as the price that was paid when the last purchase was observed.

By constructing the products’ availabilities and price paths in this manner, the cardi-
nality of the choice set of each category varies over time (with a mean across all time
periods and all categories of 62.0). In doing so, the choice sets are dynamic, which fits
the dynamic character of the stock of an apparel retailer. This differs from the multi-
category choice studies in grocery retailing mentioned in the literature review in Sec-
tion 4.1.2, where the choice sets are assumed to be static over time (which, in turn, fits
the static character of the stock of a grocery retailer).

We measure prices in multiples of hundreds of euros (e.g., 1.5 pertains to EUR 150) to
prevent numerical problems when computing likelihoods, since overflows may occur
when computing the sum of the exponential terms in (4.3).

4.4.3 Results

We implemented our sampling algorithms in Python 2.7.9 using NumPy 1.9.2 and, to
accelerate computations, we used the Lisa computer cluster (SURFsara, 2015). In total,
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Table 4.3: Posterior mean of µ and correlation matrix based on posterior mean of Σ. The
capital subscripts pertain to the various brands and p pertains to the price attribute. The
standard deviations are provided in the parenthesis.

Men’s pullovers Men’s shirts Men’s polos
βA βB βC βp βA βB βD βp βA βB βC βp

βA

βB .34
(.06)

βC .58 .60
(.04) (.05)

βp .36 .06 −.17
(.05) (.08) (.07)

βA .28 −.03 .11 .04
(.04) (.06) (.04) (.07)

βB −.13 .22 .06 −.11 .55
(.04) (.06) (.04) (.06) (.02)

βD .38 .04 .23 −.02 .79 .50
(.04) (.07) (.05) (.06) (.01) (.03)

βp −.19 .07 −.24 .35 .09 .13 −.20
(.07) (.08) (.07) (.07) (.05) (.05) (.05)

βA .42 .00 .10 .07 .28 −.01 .31 −.21
(.06) (.09) (.07) (.06) (.04) (.04) (.04) (.08)

βB −.07 .23 −.04 .09 −.11 .20 −.08 .10 .37
(.07) (.09) (.07) (.06) (.05) (.05) (.05) (.08) (.07)

βC .17 .24 .41 −.17 −.00 .04 .03 −.15 .50 .59
(.07) (.09) (.08) (.07) (.06) (.05) (.05) (.08) (.06) (.05)

βp −.14 .39 −.05 .34 −.20 .12 −.28 .51 −.47 .28 −.13
(.07) (.09) (.08) (.07) (.06) (.06) (.06) (.06) (.04) (.05) (.05)

µ 3.83 1.68 2.18 −1.65 1.39 0.61 0.78 −0.76 −1.94 0.85 0.61 −5.90
(.18) (.18) (.19) (.04) (.07) (.08) (.08) (.03) (.27) (.17) (.18) (.15)

we ran our Markov chain Monte Carlo (MCMC) sampling algorithm depicted in (4.6)-
(4.8) for 40,000 iterations, after which we discarded the first 20,000 as burn-in and kept
the rest for analysis. Given that the dataset comprises three categories and four brands
per category (see Section 4.4.1), it follows that k is equal to four: one attribute pertains to
the price and three attributes are dummy variables that indicate a category; one category
is set to zero to ensure identifiability of the model. In each iteration, we obtain a sample
for µ, Σ, and for βi for all i ∈ {1, . . . , n}, which corresponds to 144,090 values in our
setting. The algorithm is initialized with µ(0) set to the zero vector and Σ(0) set to the
identity matrix.
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Population parameters µ and Σ

In Table 4.3, the posterior mean of µ and a correlation matrix based on the posterior
mean of Σ are presented. Regarding Σ, a number of interesting remarks can be made.
First of all, we observe positive correlations between the price attribute parameters
across categories. This indicates that price (in)sensitivite of a customer is a trait that ex-
hibits similarly across categories, as one would expect. Except for the fact that this is a
satisfying result from an empirical point of view, it is also important for the functioning
of our model, since these covariances are used to project a customer’s price sensitiv-
ity in a certain category onto price sensitivities in categories for which no observations
are available. For example, suppose that we observe that a customer is relatively price
sensitive in the category men’s pullovers and that we observe no purchases in other
product categories. Then, according to the results, the model predicts that the customer
is also relatively price sensitive in the other two categories (because of the positive cor-
relations of 0.35 and 0.34, respectively). A similar observation can be made regarding
preferences for brands. Namely, in all occasions, the correlation between brand-specific
constants of the same brand are positive across categories. In addition, in almost all
cases the correlation between the same brand in different categories is higher than the
correlation with the other available brands.

Regarding µ, we observe that all the price attributes have the expected negative sign,
which implies that, on average, the demand for a product decreases in its price. For
some individual customers, however, we observe a positive mean price sensitivity pa-
rameter. This is presumably due to the fact that in the data, some customers consistently
buy at the high end of the price range. Our normality assumption on βi allows us to
quantify the proportion of the population that has a positive price sensitivity parame-
ter. In the category pullovers, for example, the mean of the price parameter is −1.65
(see Table 4.3) and the corresponding variance is 0.54 (this value comes from the non-
standardized mean of Σ, which is omitted to preserve space), from which it follows that
approximately 1% of the population has price sensitivity parameter with a positive ex-
pectation. Furthermore, from the brand-specific constants, one may, for example, infer
that, on average, a shirt of brand A is valued roughly EUR 100.- higher than one from
brand B.2

2This holds since 1.39− 0.76 · 1.00 ≈ 0.61 (recall that the prices are measured in multiples of 100 for nu-
merical stability).
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Customer-level parameters

In addition to the population parameters µ and Σ, the samples of {βi}i=1,...,n are inter-
esting, as they provide insight into customer-specific preferences and choice behavior.
Therefore, to provide an illustration of the kind of results we obtain, we anecdotally
discuss one typical customer.3 For this particular customer, we have observed two pur-
chase incidences, namely two times a pullover of brand A. Both pullovers were bought
relatively inexpensively (they were the 13th and 2nd cheapest pullover available at the
time of purchase out of 53 and 35 pullovers, respectively). This indicates that this cus-
tomer is relatively price sensitive. The posterior distributions and means of the pa-
rameters of this particular customer are presented in Figure 4.1. From this figure, we
observe that the location of the distribution of the parameter pertaining to brand A in
the category men’s pullovers is relatively high (namely, 4.41, according to the mean),
as expected given the purchases made. In addition, we like to emphasize that the dis-
tributions of the parameters pertaining to brand A in the categories shirts and polos
(in which no observations were available) also have much of their probability mass at
higher values (relative to the population average, resembled in µ).

A similar pattern can be observed for the price sensitivity of this customer: since the
customer purchases relatively cheap alternatives, we observe relatively high mean price
sensitivity in the observed categories pullovers (−2.53 vs −1.65), as well as for the un-
observed categories shirts (−1.81 vs −0.76) and polos (−7.07 vs −5.90).

Summarizing, the results are satisfying in a sense that they confirm that customers ex-
hibit cross-category consistency in brand preference and price sensitivity. In addition,
we observe that customers are (on average) price sensitive. This is all in line with re-
lated work, such as Singh et al. (2005). Furthermore, we have illustrated how our model
infers preferences in product categories in which no observations are available.

Clearly, the dependency between attributes across two categories can only be inferred
from customers who made purchases in both these categories. It is therefore expected
that the sparseness of the data plays an important role in the estimation of the parame-
ters. In the following section, we conduct a simulation study to assess the performance
of our framework for various degrees of data sparsity.

3This is the customer with ID 2139 in our dataset.
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Figure 4.1: Posterior distributions for βi of a specific customer. The columns pertain to
products categories. The subscripts A, B, C, and D represent brand-specific constants
and p denotes the price parameter. The corresponding means are in parenthesis.
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Table 4.4: Number of customers that made a purchase in one, two or three categories
for various sparsity factors.

Sparsity factor 0.0 0.2 0.4 0.6 0.8 1.0

# purchased in 1 category 0 1,600 3,200 5,600 8,800 12,000
# purchased in 2 categories 0 1,600 3,200 3,200 1,600 0
# purchased in 3 categories 12,000 8,800 5,600 3,200 1,600 0

4.5 Simulation Study on Data Sparsity

In this section, we numerically analyze the performance of the sampling scheme in (4.6)-
(4.8) as the sparseness of the underlying dataset increases. To keep this simulation study
in line with our empirical study in Section 4.4, we consider a setting with three product
categories and four brands per category and n = 12, 000. For each i ∈ {1, . . . , n}, we
sample βi from the normal distribution with mean and covariance equal to the sample
mean of µ and Σ in our empirical study in Section 4.4, which we denote by µ′ and Σ′,
respectively. Then, we simulate six purchases per customer per category, where, for
each purchase incidence, we randomly sample a product choice set with accompanying
attributes from our dataset. This results in a dataset with similar characteristics as the
real-life dataset used in Section 4.4.

To assess the consequences of increased sparsity of the data, we estimate the model
multiple times, where each time the sparseness of the data increases. More precisely, in
each estimation round, a subset of customers is selected, and all the observations from
certain categories of these customers are permanently removed. Then, we apply our
MCMC sampling scheme again to sample the parameter distributions and compare the
mean of the covariances (i.e., the off-diagonal elements of Σ) to the “true” parameters
contained in Σ′.

To quantify the sparseness of the data in each estimation round, we introduce a sparsity
factor. The purpose and precise impact of this factor is presented in Table 4.4, in which it
can be observed that the data sparseness increases as the sparsity factor increases from
zero to one. A sparsity factor of zero corresponds to the case in which all customers
make purchases in all categories and a factor of one means that each customer purchases
in only one category.

In line with the empirical study, in each estimation round (i.e., for each sparsity factor),
the first 20,000 draws are used as burn-in to allow the MCMC sampler to reach its sta-
tionary distribution. Then, the subsequent 20,000 draws are kept for inference on the
parameters.
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Figure 4.2: Sum of squared residuals (SSR) of the sampling average of Σ as the sparse-
ness of the data increases.

In Figure 4.2, we present the quality of the mean parameter estimates, as the sparseness
of the data increases. We do this by summing the squares of the differences between

all covariance estimates and the true values, i.e., SSR = ∑i ∑j>i

(
Σ̂ij − Σ′ij

)2
, where Σ̂

represents the mean of the samples of Σ. From the figure, we observe that the SSR
worsens gradually from approximately 2 to 30, as the sparseness increases from 0.0 to
0.9. Eventually, as expected, at a sparsity factor of 1.0, the SSR increases dramatically,
since some of the off-diagonal elements of Σ are no longer identified.

All in all, the results reveal that the estimation accuracy is fairly stable for a range of
sparsity levels and that the estimation accuracy only deteriorates when a minor fraction
of the customers buy in multiple categories.

4.6 Application: Promotion Optimization

The problem that we consider is to determine, for a given category, which product to
offer to a customer and how deep to discount this product to maximize revenue. We
assume that only a finite number of discount percentages is allowed. This resembles
business practice (in which the number of different discount percentages is typically
finite) and makes the optimization problem tractable.

Let D be the finite set of permissible discount fractions (e.g., D = {0.0, 0.25}means that
either no discount or a 25% discount can be given) and, for each c ∈ {1, . . . , m}, let Pc
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denote the assortment of products currently on stock in category c. With slight abuse of
notation, for each i ∈ {1, . . . , n}, c ∈ {1, . . . , m}, j ∈ Pc, and s ∈ {1, . . . , ζ}, let β

(s)
icj and

β
(s)
icp denote the sth sample of the parameter pertaining to the brand of product j and the

price sensitivity parameter, respectively, of customer i for category c. Let c ∈ {1, . . . , m}.
Then, for each i ∈ {1, . . . , n}, we consider the following problem:

max
d∈D,j∈Pc

(1− d) · pricej︸ ︷︷ ︸
price of product j

· 1
ζ

ζ

∑
s=1

eβ
(s)
icj +(1−d)·pricej ·β

(s)
icp

eβ
(s)
icj +(1−d)·pricej ·β

(s)
icp + ∑j′ 6=j e

β
(s)
icj′+pricej′ ·β

(s)
icp︸ ︷︷ ︸

purchase probability of product j

(4.16)

Since both D and Pc are finite, we can solve the problem by enumerating the complete
solution set of (4.16).

To illustrate the practical potential of our model, we set D = {0.0, 0.25} and set c as
the category men’s polos. We sample Pc randomly from the hold-out set for each
c ∈ {1, . . . , m} (cf. Section 4.4.1). Figure 4.3 illustrates for the category men’s polos
which customers received a discount of 25% (circle) and which did not receive a dis-
count (triangle). Hence, the first pane illustrates for all customers for which it was op-
timal to offer a product of brand A, whether it was optimal to discount the product or
not. The figure is based on 500 randomly selected customers to improve the readability
of the scatter plot. We emphasize that the parameter that measures the preference for
brand G was restricted to 0 for identifiability, hence the horizontal line.

All in all, Figure 4.3 indicates that it is optimal to discount if the brand preference is rela-
tively low or the price sensitivity is relatively high or both. This can be seen from the fact
that the circles (i.e., the customers for which a discount is optimal) can be approximately
separated from the circles by drawing a decreasing line or curve in the plot.

A similar analysis for the categories pullovers and shirts proved to be much less pro-
found than the results presented in Figure 4.3 for men’s polos. Presumably, this is be-
cause the observed price sensitivity in these categories is relatively low. In turn, this can
be attributed to the fact that our choice set construction method (see Section 4.4.2) may
lead to choice sets that contain many cheap alternatives, which are in fact leftovers of
odd-sized products that are not viable alternatives to many customers. For example: if
a specific pullover in size XXXL was purchased heavily discounted at the end of the sea-
son, then we assume that this product was available on this day for the same price in all
sizes. As a consequence, it is inferred that customers buy relatively expensive products,
resulting in a biased estimate of the price sensitivity.
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Figure 4.3: Each marker in the scatter plot pertains to a specific customer in the category
men’s polos. A circle implies that the customer received a discount, whereas a triangle
indicates no discount. The x-axis and the y-axis pertain to the posterior mean of the
brand preference and price sensitivity of the corresponding customer.
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4.7 Conclusion and Future Research

The current work fits in a stream of research on multi-category customer choice model-
ing, which leveraged the increased availability of customer-level transaction data. Var-
ious decisions in a multi-category shopping setting have been considered. For exam-
ple, many papers have studied the decision in which category or categories customers
buy during a shopping trip (so-called category incidence). Others have considered the
brand or product choice given a category incidence and the similarities in such choice
behavior across categories. The current work fits in this last stream, and examines the
similarities in decision making across categories of durable goods. In doing so, we ex-
amine how brand and price affect the product choice in the categories men’s polos,
men’s shirts, and men’s pullovers on a customer-level in a leading Dutch department
store. We find that price sensitivity and brand preferences are similar across categories
for the same customer. More precisely, the estimated correlation in price sensitivity
parameters across categories is relatively high, as well as correlation in brand-specific
parameters of the same brand across categories. This is consistent with existing liter-
ature on multi-category brand choice in grocery shopping. Our hierarchical Bayesian
model does not require that all customers bought in all categories, which allows us to
consider an application of our model to personalized promotions in categories in which
customers (possibly) did not buy before.

There are several caveats and directions for future research to our study that we would
like to discuss. First of all, since our model employs a full covariance matrix for the
attribute weights, the model suffers from the curse of dimensionality and does not scale
well to many categories. Even when very large transactional databases would allow
us to identify possibly tens of thousands of covariances, this would be computationally
very demanding and challenging to interpret from a practitioner’s point of view. To
resolve this, dimension reduction methods, such as developed by Singh et al. (2005),
could be implemented. In addition, we believe that our choice set construction scheme
leaves room for improvement. In the current setting, the choice set is inferred from the
transactional dataset in a rather ad-hoc way, which may induce biases as discussed at
the end of Section 4.6. To resolve this, the transactional data set should be enriched with
data on (in-store) stock levels over time, since these reflect the true alternatives that were
available when customers made their choice.
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4.A Appendix: Gibbs Sampling of µ and Σ

Let s ∈ {2, . . . , ζ} and recall that ν, V, µ, and σ are hyperparameters (see Section 4.3.5
for hyperparameter settings). The following follows from standard Bayesian theory on
conjugacy (see, e.g., Rossi et al., 2012).

For sampling step (4.7), we sample Σ(s) from

IW(ν + n, V + S),

where

S =
(

β
(s)
1 − µ̃, . . . , β

(s)
n − µ̃

) (
β
(s)
1 − µ̃, . . . , β

(s)
n − µ̃

)>
+

1
σ
(µ̃− µ̄) (µ̃− µ̄)> , and

µ̃ =
∑n

i=1 β
(s)
i + 1

σ µ̄

n + 1
σ

.

For sampling step (4.8), we sample µ(s) from N
(

µ̃, 1
n+ 1

σ

Σ(s)
)

.



Chapter 5

Data-driven Consumer Debt Collection via

Machine Learning and Approximate Dynamic

Programming

5.1 Introduction

5.1.1 Background and motivation

In the U.S., $605 billion of household debt was delinquent as of March 31, 2018 (Federal
Reserve Bank of New York, 2018). Of this amount, over $400 billion was delinquent for
more than 90 days. For companies that rely on installment payments, this means it is
of great importance to manage the collection of installments efficiently and collect as
many payments as possible to assure business continuity and drive profitability. The
potential, but also the complexity of doing so, was already recognized half a century
ago by Cole (1968):

“Collection work would be easier and the results better if there were some
magic way in which each account could be immediately and accurately clas-
sified as to the reason for nonpayment and the collection method which
would be most effective with that particular debtor. Sorting devices to per-
form such miracles unfortunately are not yet available, and until such be-
come economically and mechanically feasible the responsibility for any clas-
sification, if made at all, rests with the credit personnel involved.” (pp. 314-
315).

113
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With the increased availability of data and the development of sophisticated machine
learning techniques, such “sorting devices” have now become reality.

In this chapter, we present a framework for the data-driven scheduling of outbound
phone calls made by debt collectors. That is, we determine on a daily basis which
debtors a debt collector should call to maximize the amount of delinquent debt recov-
ered in the long term, under the constraint that only a limited number of phone calls can
be made each day. These phone calls are used to persuade debtors to settle their debt,
or to negotiate payment arrangements (e.g., a payment plan) in case debtors are willing,
but unable to repay their debt. Scheduling these calls is challenging as it is difficult to
assess the value of making a phone call to a debtor. This is because a priori the outcome
of making a call is uncertain, and the extent to which a call attributes to a repayment is
non-trivial. In general, the effect of phone calls on the repayment behavior of debtors
depends on numerous interacting features, such as the time since the previous phone
call, whether the debtor answered the call before, the amount of debt owed, the time
of the month, and the persuasiveness of the agent who is calling. It is unclear what
the effect of these (interacting) features is on the outcome of phone calls and, hence, on
the effectiveness of a schedule of phone calls. This lack of structure and understand-
ing drives our belief that a flexible non-parametric machine learning method would be
most appropriate to leverage data for optimizing actions.

To this end, we show that the problem of scheduling phone calls is naturally formu-
lated as a Markov decision process (MDP), but that a prohibitively large state space is
required to capture the dynamics of the collection process appropriately. To alleviate
this, we show how state-of-the-art machine learning methods can be used in an approx-
imate dynamic programming (ADP) framework that is interpretable, highly scalable,
and data-driven. We validate our proposed approach by means of a controlled field
experiment with real debtors in a real business setting.

This research is carried out in collaboration with an anonymous debt collection agency
from the Netherlands, to which we refer to as the Collector. The Collector provided the
data required to estimate our models and implemented our methodology to conduct the
controlled field experiment. The Collector handles about 250,000 collection cases each
year, with a principal (monetary value) of approximately e120 million. Currently, the
Collector schedules phone calls according to a static policy in which calls are scheduled
based on a one-size-fits-all policy. Given that the Collector has carefully tracked all of its
historical efforts and outcomes, we can leverage this data for the purpose of optimizing
its collection process.
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5.1.2 Contributions

To the best of our knowledge, this work is the first to incorporate modern machine learn-
ing methods into an ADP framework that is validated through a controlled field exper-
iment in a real-life business setting. We take the problem of dynamically scheduling
outbound calls for a debt collector—as naturally described by an MDP—and approx-
imate state values using supervised machine learning. More precisely, we construct a
binary classification problem to predict—based on a debtor’s state—the likelihood with
which a debtor is going to repay its debt. The debtor’s state space is high dimensional
and incorporates all static and dynamic information that characterizes a debtor at a
given point in time. For the purpose of value function approximation, we multiply the
likelihood with which a debtor settles its debt by the size of the debt—thereby obtaining
an approximation for the expected value of a debtor given its current state. In doing so,
we overcome the curse of dimensionality inherent to this problem by inferring the value
of a debtor’s state based on historical data in a highly scalable and flexible manner.

Based on our value function approximation, we compute for each debtor the marginal
value of a phone call, which is defined as the change in the value function if we spend
another phone call on this debtor. This leads to a particularly straightforward optimiza-
tion procedure, namely, we prioritize the debtors that have the highest marginal value
per phone call. The result is a policy that is interpretable (debtors with the highest
marginal value on the effort are prioritized), highly scalable, and data-driven. In addi-
tion, the optimization procedure allows for straightforward implementation in business
practice: arrivals of new debtors are naturally incorporated and an appropriate number
of phone calls can be determined to be made on a given day, depending on the debt
collector’s capacity.

We validate our proposed methodology in a controlled field experiment conducted with
real debtors. The results show that our optimized policy substantially outperforms the
current scheduling policy that has been used in business practice for many years. Most
importantly, our policy collects more debt in less time, whilst using substantially fewer
resources—leading to a 47.2% increase in the amount of debt collected per phone call.
We also identify a key managerial insight, namely that capacity is best spent on debtors
that are more difficult to collect from. These are debtors that are in the collection process
for a longer period of time, are less likely to pick up the phone, and have not partially
repaid or promised to do so. These insights help managers better understand the dy-
namics of the debt collection process.

In summary, this chapter contributes to the existing literature on business analytics,



116 Chapter 5

data-driven optimization, and that of ADPs in the following ways: i) we add to the debt
collection optimization literature by presenting a novel, scalable, and flexible frame-
work for daily data-driven scheduling of outbound calls; ii) we incorporate state-of-
the-art machine learning methods to the ADP framework, which takes advantage of
higher-order feature interactions and results in superior out-of-sample model fit for
value function approximation compared to benchmark models; iii) we open the prover-
bial machine learning black box and identify generalizable insights for the improved
scheduling of outbound debt collection phone calls; and iv) we validate our methodol-
ogy by means of a controlled field experiment with real debtors.

The following section contains a review of existing literature on debt collection and
debt collection optimization in particular. We discuss relevant literature that concerns
approximate dynamic programming in Section 5.4, together with our proposed approx-
imation method.

5.1.3 Literature review

Debt collection optimization

More than half a century ago, Mitchner and Peterson (1957) considered the problem
of optimizing the collection of delinquent debt at Bank of America for various types
of loans, such as car loans, personal loans, and real estate loans. They formulated the
problem of collecting debt as an optimal stopping problem, in which the duration with
which the collector should pursue the debtor was optimized, taking into account the
cost of doing so. Their results show a potential increase in net profit of 33%.

Fifteen years later, Liebman (1972) developed a simple Markov decision process for op-
timizing credit control policies. They solve an example problem with four delinquency
states, two amount owed states, two recent experience states, and three action strate-
gies. However, the curse of dimensionality quickly becomes a significant challenge and
no further progress on this topic was made until more recently by Abe et al. (2010),
De Almeida Filho et al. (2010), and Miller et al. (2012).

In Abe et al. (2010) and the accompanying paper Miller et al. (2012), a framework for
debt collection optimization is presented that, of the existing work, is closest to the
approach considered in this chapter. In Abe et al. (2010) the collection process is mod-
eled as a constrained MDP, which explicitly takes business, legal, and resource con-
straints into account. Subsequently, given the intractability of the MDP, a constrained
Q-learning algorithm is proposed by means of which a policy can be obtained. In Miller
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et al. (2012) the deployment of this methodology at the New York State Department of
Taxation and Finance is described for which an increase in collected delinquent debt by
8 percent is reported over the first year, where an increase of 2-4 percent would other-
wise have been projected.

Also from the operations domain, De Almeida Filho et al. (2010) present a study on
the optimization of debt collection in the context of consumer lending. In their work,
a dynamic programming approach is presented in which the monthly decision epochs
pertain to deciding which action to take in the month to come. The value function cor-
responds to the future net discounted recovery rate and the transitions are assumed
to be deterministic. Since the model assumes homogeneous debtors, the approach is
especially useful to predict collection performance and resource requirements for ag-
gregated portfolios of debtors for which it is reasonable to assume homogeneity. The
authors refer to the importance and potential of tailoring the collection process to the
individual debtor, but note that the data required for this purpose are hardly ever avail-
able in practice.

Credit scoring and valuation

In the field of finance, much research has been done on the credit-granting deci-
sion, i.e., whether to grant a loan to a potential new customer. Typically, the credit-
granting decision for personal loans is made by means of credit scoring, which is a
standardized method of assigning a score to potential customers that represent their
creditworthiness—see Crook et al. (2007) for a literature review and Lessmann et al.
(2015) for a benchmarking study on existing scoring models.

On the other hand, the valuation of existing credit—and existing unsecured credit in
particular—is more closely related to our work since the debt that the Collector is trying
to collect is essentially outstanding unsecured credit. Although much work has been
done on the valuation of corporate credit and secured customer credit, the literature
on unsecured consumer credit is sparse. The work of Chehrazi and Weber (2015) on
dynamic valuation of delinquent credit card accounts models stochastic repayment be-
havior of individual debtors over time. They derive a self-exciting point process for
repayment behavior and estimate the parameters of the process using the generalized
method of moments. This model is then used to construct a dynamic collectability score
to estimate the probability of collecting from a debt account, thus allowing for the val-
uation of credit card debt. In a subsequent paper, Chehrazi et al. (2018) formulates
a stochastic optimal control problem from the self-exciting point process established in
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Chehrazi and Weber (2015) and derives a semi-analytic solution. However, this solution
was not analyzed empirically nor experimentally validated.

5.1.4 Outline

In Section 5.2, we provide an overview of how debt collection works and what the op-
timization problem is that debt collectors face. In Section 5.3 and Section 5.4, we for-
mulate an MDP and provide an approximation for this MDP, respectively. Section 5.5
contains a description of the data used for model development and validation. In Sec-
tion 5.6, we present the results of model estimation and validation. Section 5.7 presents
the design and results of our controlled field experiment. We conclude in Section 5.8.

5.2 Problem Description

We first provide a high-level overview of the operations of a debt collector. Thereafter,
we provide more details on the actual collection process. This is all based on the expe-
riences of our industry partner (the Collector), but is illustrative for the debt collection
industry in general.

5.2.1 High-level overview

In practice, a client that has overdue debt with a company is placed “in collections”,
which means that the debtor is transferred to either a specialized debt collection depart-
ment within the company or to an external debt collecting agency that works on behalf
of the company. In this work, we refer to both as a debt collector, i.e., a debt collector
can be either the debt owner itself or a third-party debt collection agency working on
behalf of the debt owner. The debtor typically incurs a collection fee that is added to
the original debt to cover the additional costs of recovering the debt, and is regulated
in many countries. In the problem that we consider, the collection fee is independent of
the amount of debt owed and constant across debtors.

Once placed in collections, the debt collector pursues the debtor to settle the debt plus
the collection fee by sending out letters and e-mails, and through phone calls made by
its agents. Amongst the Collector’s clients are utility providers, credit facilitators, and
health care providers, which operate in the business-to-consumer market.
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The process of the Collector comprises two phases. Upon arrival, a debtor first enters
the collection phase, in which the Collector pursues the debtor to repay the debt plus
the collection fee through letters, e-mails, and phone calls. During this phase, the col-
lector acts cooperatively towards the debtor, and can offer payment plans if debtors are
willing, but not able to pay on a short-term notice. As such, this phase can take from a
few days (in case the debtor pays immediately) up to a few months (in case the debtor
does not pay at all or gets involved in a payment plan).

When the Collector is unsuccessful in recovering the debt during the collection phase,
it chooses to either write off the debt or invoke a legal procedure. The former happens
when, for example, the debtor is deceased or has declared bankruptcy. The latter means
that a bailiff is invoked, who will send out a subpoena and ultimately can confiscate
property if necessary. Whether a debtor is escalated to the legal phase or written off
is determined case by case and depends, amongst other things, on the amount of out-
standing debt and the likelihood of recovering the debt through legal procedures. Since
this phase requires legal assessment by an expert, it is very expensive and the outcome
is highly uncertain. Hence, recovering debt before the legal phase is deemed beneficial
for both collector and debtor. As such, the legal phase is excluded from the optimiza-
tion procedures proposed in this work and our objective is to maximize recovered debt
during the collection phase, which is described in greater detail in the following section.

5.2.2 Collection phase

The collection phase is characterized by four sequential letters (sent via both post and
e-mail simultaneously), where each letter has a seven-day payment notice and com-
municates with increasing urgency the necessity to repay the debt. The letters are sent
between seven to ten days of each other. The fourth and final letter communicates the
severe (financial) consequences of the legal procedure that is possibly invoked if the
debtor does not settle.

In between the letters (or after the final letter), the Collector is free to call debtors at its
discretion. This is considered a vital tool during the collection process, as the phone calls
allow the agents to inform the debtor about the situation along with the consequences
of non-payment, and to make an assessment of whether the debtor is willing and/or
able to pay. Figure 5.1 provides a schematic illustration of the collection process.

The optimization problem that the Collector encounters, is deciding each day which
debtors should be called to maximize recovered debt, given the finite and inflexible
capacity of its workforce. In practice, this implies that the Collector has to decide on
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Figure 5.1: The standard operating timeline of a debt collection agency.

a prioritization on the debtor portfolio that indicates which debtors should be called
first. Currently, the Collector’s policy is to schedule a phone call each time a debtor has
received a new letter. In addition, if a debtor agreed on a payment plan and failed to
comply with its conditions, a call is scheduled as well. In case capacity is insufficient,
the Collector’s managerial staff makes an assessment of which debtors should be called
first. Given the labor-intensive nature of the phone calls, the gains from optimizing the
prioritization of calls are potentially substantial.

5.3 Model Description

The problem of optimizing debt collection efforts over time in the current context is
formulated as an MDP with an infinite time horizon and decision epochs in discrete
time. This suits the approach of the Collector, since in principle the Collector operates
indefinitely and decisions are made at discrete points in time (i.e., daily). To formalize
the MDP, we assume that at any given point in time, the Collector has at most N ∈ N

debtors in its portfolio. Practically, this means we set N arbitrarily large such that the
Collector never has more than N debtors in its portfolio.

5.3.1 State space

We denote the state space of each of the (at most) N debtors by X and the state space
of the portfolio of debtors by X̄ := X N (i.e., the N-fold Cartesian product of X ). In our
formulation, each of the N parts of the state space is utilized by different debtors over
time—each part X of the state space X̄ functions as a slot for storing the information
of one of the debtors. A slot becomes available for new arriving debtors once efforts on
the existing debtor are terminated because the debt is recovered or written-off.

The state space below is chosen to accommodate for the data to which we apply our
methodology (as described in Section 5.5). We divide the debtor state space X into
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debtor-specific features, historical-interaction features, and seasonalities as follows.
Here, [B], [I], [N], and [C] indicate whether it is a binary, integer, numerical, or cate-
gorical variable, respectively.

Debtor specific: 1) initial debt amount [N], 2) customer tenure [B], 3) has partially re-
paid debt [B], 4) repayment plan in place [B], 5) phone number is available [B],
6) e-mail address is available [B], 7) product type [C], 8) amount repaid already
[N], 9) Collector collected from debtor before [B], 10) average income in the postal
code area of the debtor [N], 11) share of people under 30 in postal code area of the
debtor [N], 12) current substatus [C], 13) passed final letter [B].

Here, 2) indicates when the debtor became a customer of the debt owner: the exact
time was not provided, instead we have an integer that represents the inverse
order in which the debtor became a customer relative to all customers of the debt
owner (the larger the value means the debtor was a customer of the debt owner
for a longer period of time); 5) pertains to whether the debt owner provided the
Collector with a phone number of the debtor. If this is not the case, the Collector
may still be able to call the debtor by searching manually in publicly available
resources for potential phone numbers that match to the name and address of the
debtor; 7) refers to the product or service that the debtor purchased and led to the
debt; 12) refers to a debtor’s state description used internally by the Collector to
characterize a debtor at a given point in time; 13) refers to whether the debtors
have received the final (i.e., fourth) letter.

Historical interaction: 1) has answered a phone call [B], 2) promised to repay [B], 3)
number of previous collector-debtor interactions [B], 4) number of previous phone
calls [B], 5) days since promise to repay [B], 6) days since last collector-debtor
interaction [B], 7) days since last phone call [B], 8) days since last answered phone
call [B], 9) days since last incoming contact [B], 10) days since last incoming e-mail
[B], 11) days since last incoming phone call [B].

Here, 2) and 5) refer to the event in which the debtor has (verbally) promised
the Collector to settle the debt; in 3) and 6) the word ‘interaction’ includes both
collector- and debtor-initiated communication efforts, and also phone calls that
did not get through count as an interaction—thereby using it in a broader sense
than usual.

Seasonality: day of week [C], week of month [C].

For features where missing values are possible, a unique integer is used as replacement
for missing values. An example of this is the feature days since last phone call for cases
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where no phone calls have previously been made to the debtor.

5.3.2 Action space and value function

Regarding the action space, for a given day let a ∈ {0, 1}N describe which debtors
will be called: ai = 1 for i ∈ {1, 2, . . . , N} indicates that a call is made to debtor i,
and ai = 0 means no call is made on a given day. In some cases, it is undesirable to
call a debtor (e.g., when the debt is currently being further investigated because the
debtor disputed the debt). Therefore, we construct the action space as follows. Let
i ∈ {1, . . . , N}, x = (x1, . . . , xN) ∈ X̄ with xi ∈ X , and letA′(xi) denote the action space
pertaining to debtor i, so that A′(xi) equals {0} if no call is allowed and {0, 1} when a
call to debtor i is allowed. In addition, let ct ∈ N denote the (deterministic) capacity
on day t, i.e., the maximum number of phone calls that can be made on day t, where t
counts the number of days since the collection process was initiated. Accordingly, we
define

At(x) :=

{
(a1, . . . , aN) : ai ∈ A′(xi), i = 1, . . . , N,

N

∑
i=1

ai ≤ ct

}
as the action space on day t. In case slot i of the state space is not used,A′(xi) = {0} for
all xi ∈ X .

Furthermore, on day t, for x, y ∈ X̄ and a ∈ At(x), let p(x, a, y) denote the probability
of moving from state x on day t to state y on day t + 1, when choosing action a and let
r(x, a, y) denote the amount of debt recovered (i.e., repaid and received) when moving
from state x to state y choosing action a. The possible arrival of new debtors is implicitly
incorporated in p(x, a, y). Then, the optimality equation becomes

Vt(x) = max
a∈At(x)

∑
y∈X̄

p(x, a, y) (r(x, a, y) + γVt+1(y)) , (5.1)

for t = 0, 1, 2, . . ., where Vt(x) denotes the total expected discounted reward when being
in state x ∈ X̄ at day t, and γ ∈ (0, 1) denotes an appropriate discount rate. The function
Vt : X̄ → R is often referred to as the value function.

Since the state space X̄ consists of all debtor information, the formulated MDP has a
high-dimensional state space. Moreover, parts of the state space are unbounded (e.g.,
the number of collector-debtor interactions). This makes it intractable to solve the MDP
even numerically. The MDP, however, has structural properties that facilitate the com-
putation of near-optimal policies. First, the debtors in the portfolio behave indepen-
dently of each other, i.e., changes to the state and repayment probability of one debtor
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do not affect the repayment probability of the other debtors. Second, the dependence
in the problem formulation is only due to the capacity constraint ct on day t. Hence,
a natural approximation that breaks the dependence arises when the Collector solves
a stochastic knapsack problem based on the state of the debtors in the portfolio on
that day. The knapsack has size ct on day t, and the expected value of each item in
the knapsack will be given by the expected gain in the value function from calling the
debtor. Note that in this formulation, the discount factor naturally disappears since fu-
ture arrivals do not affect current decisions. In the next section, we elaborate on how to
estimate the value function of each debtor.

5.4 Value Function Approximation with Machine Learning

We use value function approximation (VFA) to approximate the value of the states of
the MDP described in the previous section. Any function can be used to approximate
the value function, including radial basis functions, polynomials, neural networks, and
decision trees (Bertsekas and Tsitsiklis, 1995). VFA has been successfully applied in
optimization in a variety of problems, such as large-scale resource allocation (Powell
and Topaloglu, 2006), multi-priority patient scheduling (Patrick et al., 2008), and au-
tonomous inverted helicopter flight (Ng et al., 2006). Recent breakthroughs in machine
learning—notably convolutional neural networks—have sparked the field of deep re-
inforcement learning, which allows for VFA through visual images. For example, Al-
phaGo was able to exploit this approach by successfully approximating the 10170 state
space in the game of Go and defeat the world’s best human players (Silver et al., 2016).

In this chapter we use another state-of-the-art machine learning algorithm for VFA,
namely, gradient boosted decision trees (GBDT). This is a more suitable algorithm for
prediction problems that are arranged in the standard tabular structure and has been
the dominant algorithm in winning well over half of all machine learning competitions
in 2015, including the KDD Cup (Chen and Guestrin, 2016). It was also found by Olson
et al. (2018) to be the best algorithm when benchmarked against twelve other algorithms
for 165 publicly available classification problems. In Section 5.4.3, we provide details on
the GBDT algorithm.

We use the GBDT model to construct a mapping V̂ : X̄ → R that approximates the value
function, thereby circumventing the problem of having to solve (5.1). This approxima-
tion is used to optimize the actions, i.e., to determine which debtors are to be called on
a given day. In the following two sections, we show how we construct the mapping V̂
(Section 5.4.1) and optimize actions based on this approximation (Section 5.4.2).
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5.4.1 Estimating the predicted repayment probability

To approximate the value of a debtor being in a particular state, we estimate the debtor’s
predicted repayment probability (PRP), which is defined as the likelihood of recovering
the full debt during the collection phase. Partially repaid cases are considered to be
unpaid as the Collector only receives credit for fully collected cases. Our approach is
to estimate the PRP based on historical data by means of a GBDT model as follows.
Suppose a certain debtor is k ∈ N days into the collection process, and consider all
closed cases that once were k days into the collection process as well, i.e., all closed
cases that either did not settle their debt within k days or were not written off within k
days. We use these closed cases to train a GBDT model that predicts the likelihood of
recovering the debt of the debtor currently considered. We formalize this procedure as
follows.

Let n ∈ N be the total number of closed cases in our dataset, i.e., cases for which the
debt was either recovered or written off, and for which the debtor is no longer being
contacted. Let i ∈ {1, 2, . . . , n} and define τi ∈ N as the total number of days debtor
i spent in the collection process. For all s ∈ {1, 2, . . . , τi}, let x(s)i ∈ X be the state of
debtor i at s days since arrival. We optimize the phone calls during the first K ∈N days
of the collection process of each debtor. Although, theoretically, K is unbounded, in our
practical implementation we set K such that virtually all calling efforts take place in the
first K days. For all k ∈ {1, . . . , K}, denote by

Ik := {i : k ≤ τi, i ∈ {1, . . . , n}}

the index set containing all the closed cases in the dataset that were still in the collection
process k days after arrival.

Furthermore, we denote by yi ∈ {0, 1} the eventual outcome of the collection process:
yi = 1 if the debt of debtor i was fully recovered after τi days, i.e., during the collection
phase, and yi = 0 otherwise, meaning that the debt was either written off or recovered
after legal actions. Hence, x(k)i and yi are the state of debtor i after k days and the
eventual outcome of the collection process, respectively, for all k ∈ {1, . . . , K} and all
i ∈ Ik.

Our approach is to train one GBDT model for each number of days since arrival k ∈
{1, . . . , K} as follows. Let k ∈ {1, . . . , K}. Then, we train model k by using (x(k)i )i∈Ik as
features (or independent variables) and (yi)i∈Ik as target (or dependent) variables. We
denote the trained GBDT model by fk : X → (0, 1), where fk maps the state of a debtor
after k days to a prediction for the likelihood that the debt is eventually recovered. This
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likelihood is exactly the PRP that we introduced earlier on, i.e., if debtor i ∈ Ik is in state
x ∈ X after k days, then fk(x) represents its PRP.

We train a single model for each number of days since arrival because the data is un-
balanced in the sense that there are many more observations for debtors that are earlier
in the collection process (i.e., |Ik| ≥ |Ik+1| for each k ∈ {1, . . . , K− 1}). This is because
cases are closed as soon as the debt is fully recovered or written off. If we train a sin-
gle model, this could cause the GBDT model to be biased toward better predicting the
early part of the process at the expense of the later part. To alleviate this, we follow the
aforementioned approach in which we split the data by days after arrival into K sets
and train K models.

Summarizing, we compute the PRP of a debtor on a given day by considering debtors
that once were in a similar situation before, given that the days since arrival is highly
correlated with the rest of the collection process.

5.4.2 Approximating the value function

To approximate the value of the state of a particular debtor, we multiply the debtor’s
PRP by its outstanding debt. More precisely, let x = (x1, . . . , xN) ∈ X̄ be the state of
the debtor portfolio at a certain point in time and let ki ∈N denote the number of days
debtor i ∈ {1, . . . , N} has been in the collection process. Our approximation for the
value of being in state x is

V̂(x) :=
N

∑
i=1

fki
(xi) · debti, (5.2)

where debti denotes debtor i’s current outstanding debt. When slot i ∈ {1, . . . , N} of the
state space is not used, we set debti = 0. Observe that, when the objective is to maximize
the number of fully collected cases (irrespective of the amount of debt recovered), we
can accommodate for this by setting debti = 1 for all i ∈ {1, . . . , N}.

Our proposed approximation in Equation (5.2) implies that we consider the Collector’s
portfolio on a particular day as an assortment of independent debtors in different states
of the collection process, and compute the value of the portfolio as a sum of their in-
dividual values. This approximation allows us to evaluate policies by computing the
difference in PRP with and without making a phone call to a particular debtor.

To formalize this, let ψ : X → X be the mapping that takes as input a debtor’s state
and then updates this state as follows: i) increase the feature number of previous collector-
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debtor interactions by one; ii) increase the feature number of previous phone calls by one;
iii) set the feature days since last collector-debtor interaction to zero; and iv) set the feature
days since last phone call to zero (see also the state space description in Section 5.3.1).
Our approach is to determine the marginal value of making an additional call to debtor
i ∈ {1, . . . , N} by computing

[
fki
(ψ(xi))− fki

(xi)
]
· debti. (5.3)

Recall that fki
maps debtor i’s state to the PRP, i.e., to a prediction of the likelihood that

debtor i will eventually repay, without needing to explicitly consider potential future
states. Hence, Equation (5.3) provides us with a measure to compare the added value of
calling different debtors. Naturally, the policy on day t is to call the ct debtors for which
Equation (5.3) is the highest (recall that ct denotes the capacity of the Collector on day
t). In the following section, we provide background on GBDT and discuss why it works
well in this particular case.

5.4.3 Gradient boosted decision trees

GBDT, also called gradient boosting machines and multiple additive regression trees, falls un-
der the general paradigm of ensemble methods in machine learning (Dietterich, 2000).
The algorithm works by constructing multiple decision trees using the classification and
regression trees algorithm (CART, Breiman et al., 1984) and combining these into a so-
called committee, in which the predictions of the individual trees are combined to form
one prediction (usually via a weighted average). We first describe how CART works
and what its drawbacks are. Then, we explain how ensembles of trees overcome these
drawbacks. Finally, we describe the GBDT algorithm and discuss why it works for our
problem of predicting the repayment of debt.

The CART algorithm works by recursively partitioning the feature space into nonover-
lapping rectangular subsets and making a prediction for the target variable for each of
these subsets. This is done by splitting, in each recursion, the feature that minimizes a
certain error metric (e.g., mean squared error or Gini impurity). This procedure is my-
opic in a sense that the partitioning decision does not consider future partitionings. As
a result, CART does not guarantee a globally optimal partitioning.

A major drawback of CART is its propensity to overfit on training data, which results in
a model that generalizes poorly to unseen data. Ensembles of CART models have been
successfully used to overcome this. Early ensembling techniques, such as bootstrapped
aggregating, commonly referred to as bagging, work by generating multiple versions
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of a prediction algorithm by using randomly selected subsamples of the training data
(Breiman, 1996). The random forest algorithm is an example of a bagging algorithm.
Subsampling observations via bootstrapping adds variation to the training data, which
leads to significantly different trees being built, resulting in reductions in error rate by
20-89% (Breiman, 2001).

Unlike bagging, where trees are built independently, GBDT builds trees sequentially.
This is called boosting and works as follows. The goal of GBDT is to minimize a loss
(or: objective) function that maps the predictions to a score that measures the quality of
the predictions. Theoretically, any differentiable function can be used as a loss function.
We use the logarithmic loss function, which is the standard choice for binary classification
problems and is defined as follows. Suppose we are training model fk for k ∈ {1, . . . , K},
then the logarithmic loss function L : R|Ik | → R is

L(z) := −
(

∑
i∈Ik

yi · log(σ(zi)) + (1− yi) · log(1− σ(zi))

)
, (5.4)

where σ : R → (0, 1) is defined by σ(u) := (1 + e−u)−1 for u ∈ R. The GBDT algo-
rithm repeats Step 1-3 below a prespecified number of times, where ε > 0 is set as a
hyperparameter:

Step 0. Initalize with zi ← σ−1
(

1
|Ik | ∑j∈Ik

yj

)
for all i ∈ Ik.

Step 1. Compute the gradient of the loss function ∂L(z)
∂zi

= σ(zi)− yi for all i ∈ Ik.

Step 2. Train a regression tree using−(σ(zi)− yi) for all i ∈ Ik as the target variables.

Step 3. Update z ← z + εz′, where z′ ∈ R|Ik | are the predictions from Step 2. Go to
Step 1.

When the algorithm terminates, σ(zi) is GBDT’s prediction for yi for all i ∈ Ik.

By iteratively building regression trees on the negative gradient in Step 2, newly built
trees are optimized for observations that are difficult to predict, thereby improving the
overall model fit with each iteration. For a more detailed discussion on GBDTs we refer
the reader to Friedman (2001) and Friedman et al. (2001).

Improving the model fit of the training data does not guarantee generalization to unseen
data. Therefore, a cap in the number of iterations is required to prevent overfitting. The
cap in the number of iterations, along with other hyper-parameters, such as maximum
depth per tree, can be tuned using a training-validation framework. The implementa-
tion of GBDT used in this chapter is LightGBM, which is a fast and distributed open
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Table 5.1: Observable collector-debtor interactions.

Variable Type Description

Debtor ID Integer -
Date Date -
Communication type Categorical Letter, e-mail, or phone call
Communication direction Binary In- or outbound
Reached Binary In case of outbound phone call
Document type Categorical In case of outbound letter / e-mail
Promised to pay Binary If debtor promised to pay

source GBDT framework developed by Microsoft (Ke et al., 2017).

CART, and GBDT, in particular, is well suited for our prediction problem for two rea-
sons. First, since CART works by partitioning the data, it is invariant to monotonic
transformations of the features. This differs from models such as logistic regression
where substantial efforts in finding the best functional transformations of the features
are required to tune the model to achieve better prediction performance. This means
that we can directly use the debtor’s collection state as features in a CART model with-
out performing any functional transformations. Second, as a consequence of recursive
partitioning, CART implicitly takes into account feature interactions that can lead to
improved prediction accuracy and better state-value approximations. Again, for other
models such as logistic regression, the feature interactions must be defined manually.

5.5 Data Description

To train and validate our proposed value function approximation method, described in
the previous section, we rely on a dataset provided by the Collector. This dataset con-
tains information on 80,138 debtors that arrived between January 1, 2014 and September
30, 2016. All these debtors are individuals, who are clients of the same insurance com-
pany. This insurance company offers all kinds of insurance products, such as car and
travel insurance plans. The dataset comprises four data sources: i) debtor-specific infor-
mation: customer tenure, the type of insurance product, whether the Collector has tried
to collect from the debtor on a previous occasion, date of arrival, postal code, original
debt, and the collection fee; ii) log of historical interactions between the Collector and
the debtor, see Table 5.1; iii) log of incoming payments; and iv) log of status and substa-
tus changes. The status and substatus changes pertain to information that is used by the
Collector to characterize the current state of a debtor. The status is active (the debtor is



5.5 Data Description 129

100 200 300 400 500
Debt size (incl. fee) in euros

0

2000

4000

6000

8000

10000

Figure 5.2: Distribution of debt amounts.
For readability, we capped the debt at
e500.
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Figure 5.3: Full repayment over time.
The y-axis pertains to the fraction of the
debtors that repaid their debt (in full) on
the corresponding day.

currently being pursued), inactive (the debt has been paid or the debt has been written
off), or on hold (the case is currently being investigated, i.e., there is reason to believe
that the debt has already been paid or is inadmissible). The substatus describes the sta-
tus in greater detail—it indicates: in which stage of the process a debtor is (i.e., which
document has been sent most recently); if the debtor has agreed to a payment plan; if
the debtor has violated a payment agreement; if the contact details are incorrect; etc.
In addition, we enriched the dataset by adding for each debtor the average disposable
income in the postal code area where the debtor resides plus data on the distribution of
age groups by leveraging publicly available data1. Using these data sources we are able
to compile the state space features described in Section 5.3.1.

In Figure 5.2 to Figure 5.5, we illustrate the characteristics of the data that we used.
In Figure 5.2, we present a histogram of the initial debt amount including collection
fee (2,430 debtors, or 3%, have a higher initial debt than e500, with a maximum of
e4,779). The histogram reveals that most debts are in the e50–e200 range, but that the
distribution has a heavy right tail, with occasionally large amounts. It holds that the
smaller the debt, the greater the likelihood that the debt is recovered by the Collector—
of all amounts smaller than e300, for example, approximately 72% is recovered in the
first fifty days, whereas for amounts larger than e300 this is only 53%.

Figure 5.3 illustrates the fraction (or relative frequency) of repaying (the full amount)
during each of the first fifty days of the collection process. For example, approximately
one percent of all debtors pay off all of its remaining debt on the twentieth day since
arrival. The figure reveals that after the first week there is a negative trend observable,

1Central Bureau of Statistics, https://www.cbs.nl/nl-nl/maatwerk/2017/15/besteedbaar-inkomen-per-
postcodegebied-2004-2014, accessed October 11, 2017.
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Figure 5.4: Number of outbound calls.
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Figure 5.5: Debt recovered for each day of
the month.

but that jumps occur regularly, which are due to letters that are sent and payment due
dates that expire.

The bar chart in Figure 5.4 illustrates the number of outbound calls made on each of
the first fifty days of the collection process of all debtors. For example, approximately
20,000 calls are made to debtors on the third day after their arrival. The figure clearly
shows that the calls are clustered after letters have been sent—around day 2, 11, 21, and
30. The last cluster that is observable, around day 43, corresponds to the payment due
date of the fourth and final letter.

Finally, in the bar chart in Figure 5.5 the inflow of money over different days of the
month is illustrated (e.g., the first bar corresponds to the amount of debt that is paid on
the first day of the month). The inflow of money peaks at the end of the month after
people have received their paycheck, and then gradually decreases again over time.

5.6 Model Estimation Results

In this section, we describe how we train and validate the GBDT binary classification
models that predict if debtors are going to repay, based on their current state (see Sec-
tion 5.4.1). First, we set up a training and validation framework (Section 5.6.1). Then, we
evaluate the prediction performance (Section 5.6.2) and illustrate debtor-specific predic-
tion trajectories (Section 5.6.3). Section 5.6.4 contains an analysis on feature importance.
Finally, in Section 5.6.5, we analyze the marginal effect of phone calls on PRP.
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5.6.1 Training and validation data

We split the dataset into a training and validation set: debtors who arrived between Jan-
uary 1, 2014 and July 19, 2015 are used for training, and debtors who arrived between
July 20, 2015 and September 30, 2016 are held out from training and used for valida-
tion.2 The decision to split the training and validation set by date is to mimic practice,
where only data of the present is available when making predictions about the future.
We chose the specific split date arbitrarily, but in practice the split is often made such
that 60-70% of the data is used for training and the remaining 30-40% is used for val-
idation. As a result, the training and validation set contain 50,624 and 28,900 debtors,
respectively. A small number of debtors had only inadmissible statuses and therefore
were not included for training or evaluation, hence the total number of debtors between
the training and validation set is less than the total reported in Section 5.5.

Figure 5.6 (a) shows the number of debtors still in the collection process as time passes
for both the training and validation datasets. The figure reveals that the number of
debtors decreases as time goes by, which is the result of repayment, writing-off debt,
and legal action. There is a sudden drop in the number of debtors around day 23 and
day 37 in the training and validation set, respectively. This is due to changes in the
collection process on January 1, 2015, where the date of initializing the legal phase was
postponed from day 23 to a variable number between days 32 and 42.

Figure 5.6 (b) illustrates the relative frequency of debtors for various days since ar-
rival from the training and validation sets. For a specific number of days since arrival
k ∈ {1, . . . , 50}, the graph illustrates the percentage of debtors that eventually repaid
during the collection process given that the debtor is still in the collection process after
k days. The percentage of debtors that settles its debt completely initially decreases as
their cases are further into the collection process. This suggests that debtors who are
more able and willing to repay their debt will do so quickly, while those who are less
able or willing to repay may require more effort. Around day 35, the percentage starts
increasing again, which can be attributed to the fact that the Collector starts writing-off
debtors that are impossible to collect from and, consequently, the remaining debtors are
not written-off and are more likely to repay.

2There is often ambiguity between the definition of validation and test sets. In this work, we define the
validation dataset as the holdout set which we use to evaluate our GBDT models.
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Figure 5.6: Number of debtors (a) and percentage of debtors that repaid (b) for various
days since arrival.

5.6.2 Debt repayment prediction performance

We measure the quality of the GBDT binary classification models f1, . . . , fK by their abil-
ity to distinguish repaying from non-repaying debtors. Recall that, for all k ∈ {1, . . . , K},
fk maps the state of a debtor after k days to a prediction for the probability that this
debtor repays its debt prior to legal action (i.e., the PRP, see Section 5.4). Due to the low
number of debtors remaining late in the collection process, we limit our model to only
consider debtors up to 50 days since arrival (where only 1,147 and 620 debtors remain
in the training and validation set, respectively), thus we set K = 50. Finally, the first
phone calls were made starting from day 2 so no debtors are considered for day 1.

The models f2, . . . , f50 are trained using the training data as described in Section 5.6.1.
For details on the construction of the features (independent variables) and the target
(dependent) variable for each model, we refer to Section 5.4.1 and Section 5.4.2. Using
the trained models, for each debtor in the validation set we compute the PRP for each
day this debtor was in the collection process. To compare the PRPs with the actual out-
comes, we use the area under the receiving operator curve (AUC). Here, the AUC can be
interpreted as the probability that we rank a randomly selected debtor that eventually
settles its debt as more likely to repay than a randomly chosen debtor that did not repay
(Fawcett, 2006). We achieve an AUC of 0.689 where, in comparison, the AUC score of
random guessing (i.e., predicting 0 or 1 with equal probability) or naively setting the
repayment probability equal to the empirical probability is equal to 0.5.

We use AUC since it measures how well we are able to rank debtors based on their
likelihood of repayment, which fits our optimization procedure in which we rank the
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Figure 5.7: The AUC for GBDT, GBDT without historical interactions, and logistic re-
gression.

marginal effect of phone calls based on PRP (see Equation (5.3) and the discussion be-
low it). Moreover, alternatives like the logarithmic loss and accuracy depend on the
distribution of the two classes (paying and non-paying debtors), which is undesirable
as it varies over time.

We also compute the AUC over time by computing the AUC of each model f2, . . . , f50

separately. More precisely, for each k ∈ {2, . . . , 50}, we use fk to compute the PRP at
day k for each debtor in the validation set that was still in the collection process after k
days since arrival. Figure 5.7 shows the AUC scores over time for the GBDT model. We
also compare it against two other benchmark models: GBDT without collector-debtor
interaction features (e.g., days since last phone call), and logistic regression with all fea-
tures.3 GBDT’s performance improves as debtors are further in the collection process up
to around day 40, and then deteriorates. In contrast, GBDT without collector-debtor in-
teraction features has consistently lower AUC and does not improve for debtors further
in the collection process. This suggests that past collector-debtor interactions have ex-
planatory power and that the predictive power increases when more information about
the debtor becomes available.

The logistic regression model exhibits a similar trend as the GBDT model in Figure 5.7.
However, it consistently underperforms both GBDT models up to day 29, beyond which
it surpasses the GBDT model without collector-debtor interaction features, but still un-
derperforms the GBDT model with the complete feature set. Even though the logistic

3All categorical features are dummy encoded to ensure consistency across the three models.
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Figure 5.8: PRP over time for a debtor that did not repay (a) and that did repay (b).

regression model uses the exact same features as GBDT, it does not perform as well
because it imposes a specific parametric specification on the features and cannot use
information from feature interactions (e.g., the combined effect of five prior interactions
and one prior phone call and eight days since the previous phone call). The AUC scores
of all three models deteriorate after day 40. This is likely due to a decreasing number of
training observations—by day 40 only 2,141 debtors (4.2%) remain in the training set.

5.6.3 Illustration of individual PRP trajectories

Our framework allows us to look back at individual debtor histories and observe the
PRP dynamics with respect to events during the collection process. Figure 5.8 depicts
the collection process for two debtors from the validation set: one which did not repay
its debt (panel (a)) and one which did repay (panel (b)).

The debtor in panel (a) starts with a PRP of around 0.80, which then gradually decreases
to around 0.30. Over time, no events occur that indicate that the debtor is going to settle
and, consequently, the PRP declines gradually over time. It turned out that the debtor
in panel (a) had moved to a different address and could not be found, explaining the
unsuccessful collector-debtor interactions as they likely were not with the actual debtor.

With a PRP of approximately 0.60 initially, the debtor in panel (b) starts with a lower
PRP than the debtor from panel (a). However, the PRP does not deteriorate much over
time and positive jumps occur frequently. These jumps are due to the fact that events
occur that positively influence its PRP. Specifically, the debtor both answers calls and
makes phone calls to the Collector itself, which are indications that the debt will likely
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be recovered.

5.6.4 Feature importance for predicting PRP

A natural question to ask is which features are informative in predicting PRP. In tree-
based models, the (relative) importance of each of the features is not immediately ob-
servable. Unlike linear models, tree-based methods do not produce a set of coefficients
that represent the (linear) effects of the features on the (predicted) outcome. A number
of methods have been developed in recent times to help interpret or explain the pre-
dictions of complex machine learning models (Ribeiro et al., 2016, Lundberg and Lee,
2017), but here we rely on a simpler approach that is already included as part of the
GBDT implementation. Given that trees are built by sequentially partitioning the fea-
tures that have the most predictive power (see Section 5.4.3), it can be inferred as follows
what the most informative features are.

Suppose we are training model fk for k ∈ {1, . . . , K} and we are building a regression
tree at Step 2 from the algorithm description in Section 5.4.3. Suppose this tree has
T ∈ N terminal nodes and denote the rectangular, non-overlapping partitioning of
the feature space by R1, . . . , RT . Then, the so-called variance gain at a terminal node
t ∈ {1, . . . , T} from splitting feature j ∈ {1, . . . , n f }, where n f ∈ N denotes the number
of features, at dj ∈ R, is equal to (Friedman, 2001, Nielsen, 2016, p.62):

(
∑i:xi∈Rt ,xij≤dj

(σ(zi)− yi)
)2

2|{i : xi ∈ Rt, xij ≤ dj}|
+

(
∑i:xi∈Rt ,xij>dj

(σ(zi)− yi)
)2

2|{i : xi ∈ Rt, xij > dj}|
−
(
∑i:xi∈Rt(σ(zi)− yi)

)2

2|{i : xi ∈ Rt}|
.

(5.5)

This expression approximates the gain (i.e., decrease) in the logistic loss function when,
at node t ∈ {1, . . . , T}, splitting feature j ∈ {1, . . . , n f } at value dj ∈ R. The regres-
sion tree from Step 2 of Section 5.4.3 is built by iteratively splitting the feature so that
(5.5) is maximized (the implementation of GBDT that we rely on (LightGBM) uses an
approximation of (5.5) that is more computationally efficient).

We use the variance gain, as implemented in LightGBM (Ke et al., 2017), to analyze the
importance of features by summing, for each feature, the variance gains of all the nodes
in all the trees at which this feature was split. For easier interpretation, we normalize
the variance gain of each feature so that the sum of all feature variance gains equals 100.
Since we train one GBDT model for each of the forty-nine days (days 2 to 50) into the
collection process, there are forty-nine sets of feature importances. Table 5.2 presents
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Table 5.2: Feature importance

Percent of the total variance gain of each feature

5 days 15 days 25 days 35 days 45 days Average

Initial debt amount 22.02 19.16 15.62 11.82 16.30 16.24
Customer tenure 24.07 18.98 15.92 14.78 11.75 15.96
Has partially repaid debt 0.00 0.05 0.00 0.07 0.00 0.08
Repayment plan in place 0.00 0.02 0.79 0.32 0.73 0.52
Phone number is available 19.65 10.73 2.97 0.82 0.18 6.65
E-mail address is available 2.80 1.44 1.11 1.21 0.96 1.43
Product type 0.00 0.00 0.00 0.00 0.00 0.00
Amount repaid already 0.00 0.17 0.05 0.17 0.47 0.44
Collector collected from debtor before 1.80 2.74 2.03 1.03 0.99 1.71
Average income in postal code area 11.44 9.89 8.79 8.62 7.32 9.00
Share of people < 30 in postal code area 5.75 5.21 6.21 6.49 7.84 6.34
Current substatus 0.02 2.66 5.76 5.50 2.59 3.29
Passed final letter 0.00 0.00 0.00 0.40 3.22 0.90
Has answered a phone call 0.67 0.35 0.60 0.14 0.09 0.42
Promised to repay 0.03 0.90 1.55 1.13 0.22 1.12
No. of previous coll.-debtor interactions 1.47 2.34 2.38 2.65 2.67 2.32
No. of previous phone calls 0.61 1.23 1.42 1.46 1.83 1.50
Days since promise to repay 0.00 0.95 5.50 2.74 3.32 2.54
Days since last coll.-debtor interaction 0.50 1.06 2.75 8.88 9.85 4.93
Days since last phone call 0.55 1.75 2.65 3.22 4.92 2.84
Days since last answered phone call 0.64 2.12 2.76 3.37 4.84 2.73
Days since last incoming contact 0.92 2.92 5.26 7.57 6.29 4.03
Days since last incoming e-mail 0.92 1.56 2.26 2.71 1.16 1.81
Days since last incoming phone call 3.86 10.53 10.77 11.41 5.98 8.95
Day of week 1.29 2.10 1.17 1.78 1.40 1.55
Week of month 0.99 1.15 1.70 1.69 0.87 1.28

The relative percent variance gain of each feature from the state space is tabulated for GBDT models trained
on debtors that are 5, 15, 25, 35, and 45 days since arrival. The average gain for each feature across all models
(days since arrival of 2 to 50 days) is tabulated in the last column.

the relative variance gain of each feature for five GBDT models, namely for f5, f15, f25,
f35, and f45 (corresponding to 5, 15, 25, 35, and 45 days since arrival, respectively).
The average gain of each feature across all forty-nine models is also included. Note
that feature importance does not specify in which direction a feature affects the model’s
predictions. GBDT does not assume monotonic feature effects so the same feature can
have positive or negative effects under different conditions.

Two observations can be made from Table 5.2. First, the features initial debt amount and
customer tenure are highly influential in predicting repayment probability of debtors,
especially early in the collection process. A reason for this may be that debtors that owe
more money are less likely to repay their debt, and debtors that have been customers
for a longer period of time are more likely to repay their debt as they have probably had
a better relationship with the debt owner. Indeed, when we compute the correlation
between PRP and initial debt amount and customer tenure for debtors in the validation set
for each model across all models we obtain an average of -0.26 and 0.42, respectively.
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Conversely, a number of features have very low impact, such as has partially repaid debt,
repayment plan in place, and product type. This is surprising because we expected the
debtors that have already repaid part of their debt or have agreed to a repayment plan
would be more likely to fully repay their debt. However, this seems to not be the case.
A possibility that these features have low impact is because there is little variation in the
training data. In particular, product type actually has zero variation in the training data
as it was first recorded in January of 2016, so that all observations in the training data
have the same value for this feature.

The second observation is that the impact of features varies for different days since ar-
rival. Debtor-specific features, such as phone number available, tend to have relatively
high impact in models that pertain to fewer days since arrival (e.g., five days). On the
contrary, features related to collector-debtor interactions, such as days since last collector-
debtor interaction, have more impact later in the collection process. The GBDT predic-
tions also reflect this, as the correlation coefficient between phone number available and
PRP in the validation set decreases from 0.50 at five days since arrival down to 0.03 at
forty-five days since arrival, and the magnitude of correlation between days since last
collector-debtor interaction and PRP increases from -0.02 at five days since arrival to -0.19
at forty-five days since arrival. Finally, some features, such as current substatus and days
since last incoming phone call, have the bulk of their effect towards the middle of the col-
lection process. This shows that different features predict repayment in different ways
throughout the collection process.

5.6.5 Marginal effect of phone calls on PRP

Our approach to maximize the amount of debt collected is to compute the difference
in PRP between making and not making an additional phone call to a debtor—see Sec-
tion 5.4 and Equation (5.3) in particular. To analyze how the marginal effect of a phone
call on PRP (abbreviated to MEPC) depends on the state of a debtor, we compute the
MEPC for every debtor in the validation set for every day that the debtor was eligible
for receiving a phone call. We identified 432,555 of such potential phone calls across the
28,900 debtors in the validation set over 497 days. The average MEPC over these phone
calls equals 0.92%, with a standard deviation of 3.73%. This indicates that, on average,
phone calls have a positive effect on PRP, but that the effect varies substantially across
debtor states.

Analyzing the impact of a feature on the MEPC is non-trivial, given that features inter-
act and correlate with each other. For example, current substatus and number of previous
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Figure 5.9: Average values for the top and bottom quintiles by MEPC for days since last
outbound phone call (a) and fraction of debtors that promised to fully repay debt (b).

collector-debtor interactions are highly correlated as they change in similar directions with
the amount of time spent in the collection process. This makes it challenging to attribute
MEPC to a single feature. Instead, we present some specific insights to illustrate how
MEPC can differ under different conditions. To do so, we sort the 432,555 phone calls
in the validation set by MEPC and compare average feature values for each day since
arrival between the top and bottom quintiles, which represent the most and least effec-
tive phone calls. Figure 5.9 contains plots for two of the features, days since last phone call
and promised to repay.

For days since last phone call (Figure 5.9a), there is no difference between the most and
least effective phone calls in the first 10 days of the collection process. From day 11 to
28, the debtors that have been called more recently seem to be better options for the
next call. Starting from day 29, the effect flips around and it becomes better to call the
debtors that were called less recently. Arguably, this has to do with intrinsic differences
in the types of debtors that remain earlier versus later into the collection process. More
debtors that are reachable and able to repay their debt remain in collections between
10 and 28 days into the process (i.e., after the first letter but before the final letter).
These debtors likely require more persuasion so calling them more often could increase
collectibility. As these debtors eventually repay their debt, the debtors that remain later
into the collection process are more likely to either be unreachable or unable to repay
their debt, and as a result, there is less value in calling them often.

For promised to repay (Figure 5.9b), it seems in general better to call debtors that have
not previously promised to repay their debt. The fraction of debtors that have promised
to repay their debt is similar between the top and bottom quintile of calls up to day 26
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Figure 5.10: MEPC for each day since arrival.

and differs significantly afterward. The intuitive explanation for this observation is that
debtors that have promised to repay their debt are already likely to repay their debt
without further intervention. Until they have broken their promise, it is better to accept
their promise and simply wait for repayment.

In Figure 5.10, we plot the MEPC against days since arrival. Phone calls seem to have
limited effect until day 20, and then become increasingly effective until day 37, after
which they become less effective again. Although there may be many reasons causing
this, we believe the increase in effectiveness is because the debtors that are able and
willing to repay their debt will likely do so early in response to the letters and e-mails,
so phone calls are unnecessary and add no value to the collectibility of these cases. On
the contrary, debtors that have not already repaid their debt two or three weeks into
the collection process are more likely to be unwilling to repay, thus phone calls can add
greater value. Phone calls begin to lose effectiveness after day 37 as more of the debtors
remaining are either unreachable or are unable to repay the debt. In the former case, the
debtor will be escalated to the legal phase, and in the latter case, an agreement might be
reached between the Collector and a debt management intermediary. Neither of these
cases will result in repayment via the collection process and spending additional phone
calls on these debtors will be wasted effort.

We emphasize that both the training and validation datasets are realizations of the Col-
lector’s actual collection process and do not reflect any form of randomized experimen-
tation. Therefore, many of the possible states may have been under-observed (e.g., zero
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phone calls made within the first 15 days of the collection process). Moreover, because
the collection process is path dependent and we do not know how individual collectors
select which debtors to call, we do not know what would have happened had different
actions been taken and cannot be sure that our MEPC estimates are unbiased. Ulti-
mately, a controlled field experiment is necessary to understand the true value of using
a data-driven prediction model to optimize phone calls.

5.7 Controlled Field Experiment

In this section, we present the results of a controlled field experiment that we con-
ducted. First, in Section 5.7.1, we discuss how we designed the experiment. Then,
in Section 5.7.2, we present the results and discuss the collection performance of our
proposed policy. Finally, in Section 5.7.3, we analyze how our proposed policy differs
from the incumbent policy by inferring how the (states of) debtors that our policy calls
differ from those called by the incumbent policy.

5.7.1 Experimental setup

To evaluate the performance of the GBDT-optimized calling policy (GOCP), which is
described in Section 5.4.2, we ran a controlled field experiment spanning a period of 102
days starting on January 19, 2018 and ending on April 30, 2018. The experiment regards
debtors that are clients of the same insurance company used for the data analysis in
Section 5.5 and the model development in Section 5.6.

Starting from January 19, 2018, we assigned each newly arriving debtor randomly to
one of the following three collection policies: GOCP, the incumbent policy (IP) currently
used by the Collector (described in Section 5.2.2), or a third experimental policy, which
is not related to our research. For our analysis, we consider debtors that arrived between
January 19, 2018 and February 28, 2018, since for these debtors we observe the outcome
of the collection process (given that the experiment ran until April 30, 2018). As a result,
a total of 921 debtors are within the scope of our experiment, of which 455 were exposed
to GOCP and 466 to IP.

The implementation of GOCP is as follows. At the start of each day, we train fifty GBDT
models, as described in Section 5.4.1, based on all the closed cases from January 1, 2016
up to the present day. Then, according to Equation (5.3) in Section 5.4.2, we compute
the predicted marginal effect of making a phone call for each of the open cases that are
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no more than fifty days into the collection process and are eligible for receiving phone
calls. Debtors are not eligible for receiving phone calls if, e.g., the debt is currently being
investigated because the debtor disputed the debt (we use the substatus of debtors, see
Section 5.5, to verify if a debtor is eligible for receiving phone calls).

The Collector’s objective is to maximize the number of cases that are completely re-
covered, since only in case of full recovery does the Collector receive a collection fee,
which is independent of the amount of debt. To this end, when computing the marginal
effect of phone calls according to Equation (5.3), we set debti = 1 for each debtor
i ∈ {1, . . . , N} (note that the amount of debt is still part of the state space of a debtor,
since it does affect the likelihood of repayment). In this way, GOCP is designed to max-
imize the number of fully recovered cases.

The cases are then sorted by the predicted marginal effect of calling, and the top 20%
of these debtors is added to the pool of planned phone calls for that day. A number
of phone calls following other policies (including IP) are also added to this pool. This
is done in a way that the capacity of the Collector on a given day is sufficient to make
all the phone calls in the calling pool. Agents in the Collector’s call center are free to
call debtors from the calling pool at their discretion. To prevent bias originating from
behavioral changes of the agents, there is no identifier of which debtors are following
which policy within the pool of planned calls and the agents were not aware of this
experiment.

The Collector is required to always attempt at least one phone call before sending out
the next letter. To conform with this, when a specific debtor is not called for a long time,
it is artificially prioritized and scheduled for a phone call, so that the next letter can be
sent afterward.

5.7.2 Experimental results

We evaluate the performance of GOCP (relative to IP) by considering the state of each
of the 921 debtors in the scope of this experiment at the time the experiment ended on
April 30, 2018. In Table 5.3, we provide summary statistics on the performance of IP
and GOCP. In general, GOCP is able to (fully) recover more cases and collect more debt
in shorter time, whilst requiring much fewer resources.

To see this, observe that IP recovered only 57.2% of the total outstanding debt, whilst
GOCP was able to recover 65.2%, which is a substantial relative increase of 14.0%. This
corresponded with 62.6% of the cases being fully recovered by GOCP and 59.0% by
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Table 5.3: Summary statistics on the results of the experiment.

IP GOCP

Key figures
Number of debtors 466 455
Number of outbound calls 1,119 876
Number of inbound calls 236 188
Fraction of total debt recovered 0.572 0.652
Amount collected per call (e) 31.80 46.30
Amount collected per outbound call (e) 38.53 56.72

Descriptive statistics
Fraction of debtors that is called at least once 0.916 0.831 ***

Fraction of outbound phone calls picked up 0.268 0.223
Fraction of fully collected cases 0.590 0.626
Average number of days until first phone call 4.5 7.7 ***

Average number of outbound calls per debtor 2.40 1.93 ***

Average number of days until full repayment 22.2 20.3
Average initial debt (e) 161.74 166.17

***, **, and * indicate a statistically significant difference at a significance level of
0.01, 0.05, and 0.10, respectively. Inbound calls are calls made by debtors to the
Collector, e.g., after missing a phone call from the Collector or after receiving one
of the letters.

IP. Of the fully recovered cases, the average number of days until complete repayment
is 22.2 for IP and 20.3 for GOCP, suggesting that GOCP is not only more effective at
collecting more debt, but that it also does so in less time.

The total number of phone calls made by GOCP is 21.8% lower than IP (876 vs 1,119
outbound calls). Together with the increased amount of debt recovered, this leads to a
47.2% increase in the monetary amount collected per call made by GOCP as compared
to IP (e56.72 vs e38.53). When also including the inbound phone calls—usually made
by debtors after missing a call or receiving a letter from the Collector—we see the same
picture, namely an increase in 45.6% in euros collected per call. Overall, this shows that
the calls under our data-driven policy are considerably more effective in terms of return
on effort than the incumbent policy.

The (decrease in) number of outbound phone calls under GOCP is mostly the conse-
quence of the implementation of GOCP, in which the 20% of debtors is called that have
the highest predicted marginal increase in PRP (see Section 5.7.1). Hence, the decrease
in number of phone calls on itself is not a direct consequence of GOCP. However, it is
due to GOCP that the most effective phone calls can be selected, which, in this case,
leads to more debt being recovered, whilst requiring fewer phone calls.
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Apart from the number of phone calls, the fraction of debtors that receive at least one
phone call is also substantially lower for GOCP than for IP, namely 83.1% vs 91.6%.
Presumably, this is due to the fact that, on average, GOCP makes the first phone call
to a debtor only after 7.7 days, whilst IP does so after 4.5 days (recall that IP always
schedules a phone call immediately after sending out the first letter). Consequently, IP
calls debtors that would have settled on short-term notice without requiring the persua-
sion of one of the Collector’s agents—thereby wasting expensive capacity. On the other
hand, GOCP postpones the first call, thereby allowing debtors to settle and spending
only effort on debtors that are not able or willing to pay.

All in all, the results reveal that the data-driven approach to debt collection that we
propose substantially outperforms the existing policy that is based on business rules.
As such, it shows that the historical data available contains sufficient information to
make better decisions in a highly automated manner and that our framework is capable
of operationalizing and monetizing this data.

5.7.3 Comparison of GOCP and IP

The previous section revealed that GOCP is much more effective as a calling policy than
IP. In this section, we analyze how the debtors that were selected by GOCP differ from
those selected by IP. To this end, we identified all phone calls that were the first phone
call to a debtor on a given day. These calls are most likely a result of the respective
policies and were not in response to an incoming call or a chain of phone communication
within a day. Based on these calls, we made a comparison between the state of debtors
called by GOCP and by IP, of which the results are presented in Table 5.4 (see Section 5.3
for a full description of the state space). For example, GOCP calls debtors that are on
average 18.6 days into the collection process, whilst for IP this is 15.6 days. Recall that
telephone number available regards to whether the phone number was known at the time
the debtor arrived, i.e., whether it was provided by the debt owner. In case it is not
available, phone calls can still be made if a phone number can be retrieved through,
e.g., public telephone directories. In the following sections, we discuss insights derived
from Table 5.4.

GOCP spends more effort on difficult cases

The results in Table 5.4 indicate that GOCP, as compared to IP, focuses on debtors that
are more difficult to collect from. To see this, first observe that, compared to IP, GOCP
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Table 5.4: Comparison of the state of debtors that IP and GOCP call.

Debtor state feature IP GOCP

Debtor specific
Days since arrival 15.6 18.6 ***

Initial debt (e) 167.67 173.08
Has partially repaid debt 0.005 0.006
Repayment plan in place 0.036 0.045
Phone number is available 0.712 0.634 ***

E-mail address is available 0.765 0.706 ***

Amount already repaid (percent of total) 0.002 0.001
Collector collected from debtor before 0.368 0.326 *

Average income in postal code area (thousands) 33.35 34.28 **

Share of people under 30 in postal code area 0.361 0.361
Passed final letter 0.001 0.000

Historical interaction
Has answered call before 0.231 0.162 ***

Promised to repay 0.104 0.069 **

Number of previous collector-debtor interactions 3.9 3.6 **

Number of previous phone calls 1.0 0.9 *

Days since promise to repay 19.5 22.1
Days since last collector-debtor interaction 2.8 5.9 ***

Days since last phone call 13.3 13.5
Days since last answered phone call 17.1 17.9
Days since last incoming contact 14.6 17.4 *

Days since last incoming e-mail 12.0 16.7 **

Days since last incoming phone call 18.0 20.8

Based on 830 and 642 calls initiated by IP and GOCP, respectively. ***, **, and *
indicate a statistically significant difference at a significance level of 0.01, 0.05, and
0.10, respectively.
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calls more debtors that did not answer a phone call before. This suggests that GOCP
calls debtors that are more difficult to reach and likely more difficult to collect from.
Second, GOCP calls less frequently to debtors that have previously promised to settle
their debt. Hence, GOCP spends relatively more effort on debtors that have not yet
shown willingness to pay by acknowledging their debt to the Collector. Third, GOCP
calls debtors that have been in the process for a longer period of time (18.6 days vs 15.6
days), which also suggests that GOCP focuses on the more difficult cases—given that
debtors with a high willingness to pay settle early in the process. Finally, compared to
IP, GOCP calls more often to debtors for which less information is available. Namely, the
fraction of debtors of which the phone number and e-mail address were known is lower
for GOCP. The unavailability of this information makes collection work more difficult,
but GOCP suggests that it is worthwhile pursuing those debtors (e.g., by searching for
their phone number elsewhere).

Timing of phone calls

IP schedules debtors immediately after they receive one of the four letters that are sent
by the Collector, and are then “forgotten” until the next letter has been sent. On the other
hand, GOCP calls debtors at its discretion based on the debtors’ states. As a result, from
Table 5.4, we clearly see that the timing of phone calls made by GOCP differs from that
of IP: GOCP makes on average the first phone call to a debtor 3.2 days later than IP (see
Section 5.7.2) and also calls debtors that have been in the collection process longer (18.6
days for GOCP as compared to 15.6 days for IP, see Table 5.4). In addition, the number
of days since last collector-debtor interaction is much higher for GOCP (5.9 days for
GOCP vs 2.8 days for IP).

These observations, together with the results from Section 5.7.2, suggest the following.
After sending letters, it is worthwhile to give debtors some slack to settle their debt, be-
fore spending expensive phone calls on these debtors. Hence, by waiting longer before
making the first call and waiting longer after the previous interaction with the debtor,
automatically only debtors that are unable or unwilling to pay remain—these are ex-
actly the debtors that the Collector would want to spend capacity on.

Recall that the Collector requires that a phone call is made before debtors can be esca-
lated to the next letter, thereby setting an upper bound on the number of days without
a phone call (see Section 5.7.1). Without this business constraint, we expect the results
to be even more profound.
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Similarities between GOCP and IP

Although GOCP and IP call debtors that differ in several aspects, they are not signif-
icantly different in other aspects. It is surprising to see that debtors called by both
policies do not significantly differ in outstanding debt (e173.08 vs e167.67 for GOCP
and IP respectively). The difference is almost identical to the difference in initial out-
standing debt for debtors assigned to the two policies. However, both policies actually
select debtors with greater debt than average (e163.93). This is likely due to the fact
that debtors with smaller debt amounts tend to repay earlier, and thus more calls are
eventually made to debtors with larger debt amounts.

5.8 Conclusion

This chapter considers the problem of deciding on a daily basis which debtors a debt
collection agency should call, given that only a limited amount of calls can be made by
its agents. This is a challenging optimization problem since, at any given time, a debtor
portfolio consists of a large collection of heterogeneous debtors that are at different
stages in the collection process. Our approach is to formulate an MDP and approximate
it through data-driven machine learning methods—thereby circumventing dimension-
ality issues by relying on historical data. This approach revolves around computing,
for each debtor at each state, the predicted repayment probability (PRP) and inferring
the marginal increase in PRP when making an additional phone call. We find that in
a holdout sample our machine learning technique achieves 0.689 AUC for the PRP es-
timates. Furthermore, we were able to obtain an improved scheduling policy for our
industry partner. We validated this policy in a controlled field experiment conducted
with real debtors. The results show that our data-driven policy substantially outper-
forms the current scheduling policy. Most notably, our policy leads to an increase in the
amount of debt collected per outbound call from e38.53 to e56.72, leading to a 47.2%
improvement in return on calling effort. The improvement comes mostly from selecting
debtors that have been in the collection process longer, have not been contacted recently,
and have not previously answered calls nor promised to repay their debt. In general,
the proposed policy puts more emphasis on debtors that are harder to collect from and
calls are scheduled later in the collection process.



Summary

Many organizations strive to become data-driven these days. This means that the de-
cisions they make are based on data instead of, for example, intuition, experience, or
domain knowledge. The promise is that data-driven decisions are better decisions. In-
deed, the ever-increasing amount of available data suggests that there is business value
to be gained—for example, by increasing the ability to understand customers’ needs or
by working in a more cost-effective manner. For many organizations, however, it re-
mains an open question as to how all of the available data can be leveraged to deliver
real value. This dissertation addresses that question in several ways.

The first three chapters of this dissertation consider data-driven price optimization. This
concerns the question about what the right price is for the goods or services that a com-
pany sells. In this context, the right price is usually the price that maximizes the profit
or the turnover that it induces. Depending on the industry considered, various fac-
tors play a role in setting the right price, such as price elasticity, competition, capacity,
and consumer behavior. Arguably the most apparent example is that of the fluctuating
prices for airline tickets. Although consumers often disapprove with such pricing prac-
tices, it is economically justifiable: if the number of available seats on a flight decreases,
the scarcity increases, and so should the price. Other examples of data-driven pricing
strategies are Uber’s surge pricing and the dynamically priced assortment of retail giant
Amazon.

In Chapter 2, we consider the problem of optimizing the prices of an assortment of
products when the relationship between price and demand is known. That is, we know
the demand function, but the prices that maximize the revenue are unknown. The con-
tribution of this chapter is that we consider a new demand function in the context of
price optimization. This demand function—the latent class logit model—is capable of
capturing customer heterogeneity, whereas existing models assume that all customers
are the same. More precisely, in our approach, we acknowledge that different types of
customers exist with different preferences.
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For this demand function, we develop an algorithm that obtains the optimal prices with
arbitrary precision. The novelty of our algorithm is that the computation time grows
slowly (“polynomially”) when the number of products in the assortment increases. This
is an appealing property, as the number of products of, for example, an online retailer,
is potentially enormous. By incorporating customer heterogeneity in a scalable way,
Chapter 2 contributes in bridging the gap with business practice, for which many com-
plexities still need to be addressed.

Another complexity that makes price optimization challenging in practice is the exis-
tence of competition. This, we consider in Chapter 3 by studying a market in which
multiple competitors offer similar products to a heterogeneous customer base. In ad-
dition, the sellers are uncertain about the price elasticity of their customers, meaning
that the seller does not know exactly how price changes will affect the demand for their
products. The idea is that sellers carefully experiment with prices to “learn” the demand
function and, subsequently, set the optimal price.

This scenario, i.e., dynamic pricing and learning with competition, is a notoriously dif-
ficult problem to solve. Therefore, we organized a competition in which contestants
were invited to submit pricing and learning algorithms, which we then used to sim-
ulate different market environments. In doing so, we were able to obtain evidence on
how pricing algorithms should be designed. Our results indicate, amongst other things,
that ignoring competition is increasingly harmful when the number of competitors in-
creases, and that an “every day, low price” strategy is very difficult to beat.

Chapter 4 is an empirical study in which we model customer behavior by relying on the
transaction data of a large department store. We model how the price and brand of a
product influence the decision-making process when the customer decides which prod-
uct to purchase. Our model allows us to predict on an individual level which products
a customer will likely purchase. We show how these predictions can be leveraged to
offer personalized promotions to customers, where both the product and the discount
level are customized per individual.

The final chapter of this dissertation (Chapter 5) considers the data-driven scheduling
of phone calls made by a debt collection agency. Our data-driven scheduling algorithm
decides on a daily basis which debtors should be called to maximize the amount of debt
recovered in the long run. These phone calls are meant to inform the debtors about
the amount of debt owed, persuade them to recover the debt, or to negotiate payment
plans in case the debtors are willing, but unable to pay. To identify the debtors for
which phone calls are most valuable, we use a state-of-the-art machine learning method
to predict how the likelihood of repayment increases when a phone call is made.
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To validate our methodology, we ran a large controlled field experiment with real
debtors. The results indicate that our data-driven scheduling methodology leads to
substantially more repayments than the policy used in practice. Not only were we able
to collect more debt, it also required less time to collect it. As a result, the debt collected
per outgoing phone call increased significantly.

All in all, this dissertation contributes to both the theory and practice of data-driven
optimization, and in particular on data-driven pricing. It considers important open
problems, such as optimal pricing with heterogeneous customers and pricing and learn-
ing with competition. Some parts (such as Chapter 2) have a strong focus on develop-
ing new theory, thereby, paving the way for future research. Other parts (for example,
Chapter 5) are applied in nature and directly applicable in business practice.
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